首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f(x1,x2,x3)=xTAx=(x1,x2,x3),满足=2,AB=O,其中B= 用正交变换化二次型为标准形,并求所作正交变换;
设二次型 f(x1,x2,x3)=xTAx=(x1,x2,x3),满足=2,AB=O,其中B= 用正交变换化二次型为标准形,并求所作正交变换;
admin
2018-07-26
51
问题
设二次型
f(x
1
,x
2
,x
3
)=x
T
Ax=(x
1
,x
2
,x
3
)
,满足
=2,AB=O,其中B=
用正交变换化二次型为标准形,并求所作正交变换;
选项
答案
由题设条件AB=A[*]=O,故B的3个列向量都是Ax=0的解向量,也是A的对应于λ=0的特征向量,其中ξ
1
=[*],线性无关且正交,[*],故λ=0至少是二重特征值. 又因[*]=,另一个特征值是λ
3
=2,故λ
1
=λ
2
=0是二重特征值.因A是实对称矩阵,故对应λ
3
=2的特征向量应与ξ
1
,ξ
2
正交,设ξ
3
=(x
1
,x
2
, x
3
)
1
,则有 [*] 故存在正交变换x=Qy,其中Q=[*],使得f=x
T
Ax=y
T
[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/nfg4777K
0
考研数学一
相关试题推荐
设两台同样的记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动.求两台记录仪无故障工作的总时间T的概率密度.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
证明:当0<x<1时,.
设N阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+α2+…+(n—1)αn—1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
计算曲面积分(|x|≤1)绕z轴旋转一周所得到的曲面,取外侧.
设盲线l过点M(1,一2,0)且与两条直线l1:,垂直,则l的参数方程为___________.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
解下列微分方程:(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解;(Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)+y″+y′+y=0的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为()
随机试题
最常出现Charcot三联征的疾病是
患者,女性,38岁,双额黏膜白色病变1年。活检标本见上皮萎缩,表面不全角化,上皮钉突呈不规则延长,基底细胞层液化变性,固有层内近上皮区域见淋巴细胞浸润带。病理诊断为
可引起股骨头无菌性坏死的药物最常见是( )
下列关于工作范围变更控制系统的表述不正确的是()。
计算机“黑客”常用的入侵手段包括()。
可赎回债券是公司可以在适当时机以约定价格赎回的债券,可赎回债券的票面利率与普通公司债券的票面利率相比( )。
根据下列资料。回答下题。2011年,新疆全口径财政收入1646.18亿元,增长38.2%。地方财政收入1038.80亿元,增长49.8%。地方财政一般预算收入720.91亿元,增长44.0%,其中,各项税收收入593.36亿元,增长42.6%。在税
中国共产党在残酷的战争年代和异常艰苦的环境下,能够生存,并不断发展壮大,一个重要原因就在于它的思想上的先进性,通过广大党员外在的优良作风得到了活生生的体现。在党的七大中,毛泽东将党长期形成的优良作风作了理论概括,其内容不包括()
下列描述中正确的是
【B1】【B5】
最新回复
(
0
)