首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有( )
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有( )
admin
2019-08-12
29
问题
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有( )
选项
A、f’(x)<0,f’’(x)>0
B、f’(x)>0,f’’(x)<0
C、f’(x)>0,f’’(x)>0
D、f’(x)<0,f’’(x)<0
答案
C
解析
由f(x)=f(一x)可知f(x)为偶函数,因可导偶函数的导数是奇函数,可导奇函数的导数是偶函数,即f’(x)为奇函数f’’(x)为偶函数,因此当x<0时,有f’(x)<0,f’’(x)>0;当x>0时,有f’(x)>0,f’’(x)>0。故选C。
转载请注明原文地址:https://kaotiyun.com/show/nqN4777K
0
考研数学二
相关试题推荐
设=A,证明:数列{an}有界.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
已知n(n≥3)阶实矩阵A=(aij)n×n满足条件:(1)aij=Aij(i,j=1,2,…,n),其中Aij是aij的代数余子式;(2)a11≠0.求|A|.
A=,求作一个3阶可逆矩阵P,使得PTAP是对角矩阵.
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0的特解。
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I3=(b-a)f(b),则I1,I2,I3的大小关系为()
微分方程y"+2y’+y=shx的一个特解应具有形式(其中a,b为常数)()
周期函数y=f(x)在(-∞,+∞)内可导,周期为4,且则y=f(x)在点(5,f(5))处的切线斜率为()
随机试题
“当心超压”的标志是。()
阅读朱光潜《选择与安排》中的一段文字,然后回答下列小题。用兵制胜的要诀在占领要塞,击破主力。要塞既下,主力既破,其余一切就望风披靡,不攻自下。古人所以有“射人先射马,擒贼先擒王”的说法。如果虚耗兵力于无战略性的地点,等到自己的实力消耗尽了,敌人的要塞和主
肝硬化大量腹水患者,治疗腹水首选的利尿剂联合方案是
张某向其弟弟转让债权的行为()。赵某对李某违约的行为()。
下列分子中是极性分子的有()。
在工程结算进程中,监理工程师()有关争议和索赔问题。
【背景资料】某城市拟对全市的给水系统进行全面改造,通过招标投标,选择了一家企业作为施工总承包单位。在给水厂站施工过程中,对降水井的布置提出了要求:(1)面状基坑采用单排降水井,布置在基坑外缘一侧;(2)降水井的布置在地下水补给方向适当减少,排泄方向适当
—位新教师把大量时间花在维护自己与同事、领导之间的关系上,说明其处于成长的()。
为了缓解城市交通拥挤的状况,市长建议对每天进入市区的私人小汽车收取5元的费用。市长说,这个费用将超过乘公交车进出市区的车费,所以很多人都会因此不再开车上班,而改乘公交车。以下哪项,如果为真,最严重地削弱了市长的结论?
下面关于运行应用程序的说法正确的是()。
最新回复
(
0
)