首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求xy"一y’lny’+y’lnx=0满足y(1)=2和y’(1)=e2的特解.
求xy"一y’lny’+y’lnx=0满足y(1)=2和y’(1)=e2的特解.
admin
2018-08-22
45
问题
求xy"一y’lny’+y’lnx=0满足y(1)=2和y’(1)=e
2
的特解.
选项
答案
设y’=p,则y"=p’,代入原方程中,xp’一plnp+plnx=0,即 [*] 这是齐次方程,设p=xu,则[*]代入上式,得 [*] 由原方程知x>0,y’>0,从而u>0,积分得 lnu一1=C
1
x,即lnu=C
1
x+1, 回代[*]得p=xe
C
1
x+1
. 代入初值条件y’(1)=e
2
,解得C
1
=1,得到方程 [*] 积分得y=(x一1)e
x-1
+C
2
. 代入初值条件y(1)=2,解得C
2
=2,故所求特解为 y=(x一1)e
x+1
+2.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZFj4777K
0
考研数学二
相关试题推荐
=_______
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=,求方程组AX=b的通解.
求(4一x+y)dx一(2一x—y)dy=0的通解.
求内接于椭球面的长方体的最大体积.
求曲线的斜渐近线.
设三阶实对称阵A的特征值为1,2,3,A的属于特征值1,2的特征向量分别是ξ1=[一1,一1,1]T,ξ2=[1,一2,一1]T,求A.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
求极限:
设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题: (1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
随机试题
宋代文艺创作成就最为全面的作家是________。
高血压性脑出血大多发生在
根据我国仲裁法和民事诉讼法的规定,出现下列哪些情形时,人民法院对仲裁裁决不予执行?()。
火场逃生中,哪项是不正确的方法()
采用直接分配法分配辅助生产费用时,要考虑各辅助生产车间相互提供产品或劳务的情况。()
Onereactiontoalltheconcernabouttropicaldeforestationisablankstarethatasksthequestion,"SinceIdon’tliveint
西双版纳植物园种有两种樱草,一种自花授粉,另一种非自花授粉,即须依靠昆虫授粉。近几年来,授粉昆虫的数量显著减少。另外,一株非自花授粉的樱草所结的种子比自花授粉的要少。显然,非自花授粉樱草的繁殖条件比自花授粉的要差。但是游人在植物园多见的是非自花授粉樱草而不
劳动力的价值内在构成包括
To:SecurityguardsFrom:MichaelReni,BuildingSecurityHeadSubject:SecurityInspectionsTherehavebeenseveralinstancesw
Thedamagetohiscarwas______;therefore,hecouldrepairithimself.
最新回复
(
0
)