首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内连续,以T为周期,则 (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期←→∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期为T←→∫0Tf(x)d
设f(x)在(一∞,+∞)内连续,以T为周期,则 (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期←→∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期为T←→∫0Tf(x)d
admin
2016-06-25
63
问题
设f(x)在(一∞,+∞)内连续,以T为周期,则
(1)∫
a
a+T
f(x)dx=∫
0
T
f(x)dx(a为任意实数);
(2)∫
0
x
f(t)dt以T为周期←→∫
0
T
f(x)dx=0;
(3)∫f(x)dx(即f(x)的全体原函数)周期为T←→∫
0
T
f(x)dx=0.
选项
答案
(1)[*]∫
a
a+T
f(x)dx=f(a+T)一f(a)=0 →∫
a
a+T
f(x)dx=∫
a
a+T
f(x)dx|
a=0
=∫
a
a+T
f(x)dx. (2)∫
a
x
f(t)dt以T为周期←→∫
0
x+T
f(t)dt一∫
0
x
f(t)dt=∫
x
x+T
f(t)dt[*]∫
0
T
f(t)dt=0. (3)只需注意∫f(x)dx=∫
0
x
f(t)dt+C,∫
0
x
f(t)dt是f(x)的一个原函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/c6t4777K
0
考研数学二
相关试题推荐
设f(x)连续,φ(x)=∫01f(xt)dt,且=A.求φ′(x),并讨论φ′(x)在x=0处的连续性.
________.
已知求a,b的值.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布,商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元。计算此商店经销该种商品每周所
试确定常数A、B、C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小。
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积。当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设f(x)在[a,b]上连续,且x→a+时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设f’(sin2x)=cos2x+tan2x,则f(x)=______(0<x<1).
随机试题
欲提高降尘室的生产能力,主要的措施是()。
男,35岁,双下肢及眼睑水肿3天。查体:颜面及双眼睑浮肿,肝脾肋下未及,移动性浊音(+),双下肢凹陷性水肿。辅助检查:尿蛋白(++++),红细胞3~6个/HP;血清ALT、AST正常,总蛋白49g/L,球蛋白35g/L,胆固醇10mmol/L,BUN7mm
抑制性突触后电位
可导致小儿营养不良的原因不包括()
关于对求助者的尊重,错误的是()。
“张老师在期末阶段组织学生举办‘班级音乐会’,并要求学生写出对他人表演的观后感和建议。”这种评价方式是()。
在下列关系运算中不改变关系表中的属性个数但能减少元组个数的是()。
素数是指只含有两个因子的自然数(即只能被自身和1整除)。孪生素数,是指两个相差为2的素数。比如,3和5,17和19等。所谓的孪生素数猜想,是由希腊数学家欧几里得提出的,意思是存在着无穷对孪生素数。该论题一直末得到证明。近期,美国一位华人讲师的最新研究表明,
通常认为左撇子比右撇子更容易出事故。这是一种误解。事实上,大多数家务事故,大到火灾、烫伤,小到切破手指,都出自右撇子。以上哪项最为恰当地概括了上述论证中的漏洞?
网络营销是企业借助因特网进行_______的一种方式。
最新回复
(
0
)