首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P一1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P一1AP为对角矩阵.
admin
2019-04-22
81
问题
设n阶矩阵
(1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
当b=0或n=1时,A=E,于是A的特征值为λ
1
=…=λ
n
=1,任意非零列向量均为特征向量;对任意n阶可逆矩阵P,均有P
一1
AP=E.下面考虑b≠0且n≥2的情形. 由[*] 得A的特征值为λ=1+(n—1)b,λ=…=λ=1一b. (1)对于λ
1
=1+(n一1)b,考虑齐次线性方程组(λ
1
E一A)x=0,对λ
1
E-A施以初等行变换,得[*] 解得基础解系为ξ
1
=(1,1,…,1)
T
,所以A的属于λ
1
的全部特征向量为k
1
ξ
1
=k(1,1,…,1)
T
(k
1
为任意非零常数). 对于λ
2
=…=λ
n
=1一b,考虑齐次线性方程组(λ
2
E一A)x=0.对λ
2
E-A施以初等行变换,得[*]解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
,故A的属于λ
2
的全部特征向量为k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
(k
2
,k
3
,…,k
n
是不全为零的常数). (2)令P=(ξ
1
,ξ
2
,…,ξ
n
),则 [*]
解析
本题主要考查含参数的矩阵的特征值、特征向量的计算问题.计算过程中涉及行列式的计算、齐次线性方程组的求解以及矩阵对角化问题,因而是一道综合性较强的试题.由矩阵A的特征多项式|λE一A|,求出特征值,然后通过解齐次线性方程组(λE一A)x=0,求特征向量,进而求出P.
转载请注明原文地址:https://kaotiyun.com/show/ntV4777K
0
考研数学二
相关试题推荐
下列等式中有一个是微分方程,它是[].
半圆形闸门半径为R(米),将其垂直放入水中,且直径与水面齐,设水密度ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P为()
方程y〞-2y′+3y=eχsin()的特解的形式为
设f(χ)=3χ2+Aχ-3(χ>0),A为正常数,问A至少为多少时,f(χ)≥20?
设A是m×n阶矩阵,若ATA=O,证明:A=O.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
设3阶方阵A的特征值分别为一2,1,1,且B与A相似,则|2B|=_______.
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.(1)试求D1绕x轴旋转而成的旋转体的体积V1;D2绕y轴旋转而成的旋转体的体积V2;(2)问
随机试题
采用断续分齿飞刀铣削蜗轮时,飞刀相当于蜗轮滚刀的一个刀齿,在切削过程中作()。
会计科目。
用自动血液分析仪时,首选的抗凝剂是
自航式、自带泥舱、一边航行一边挖泥的吸扬式挖泥船是()。
入境汽车的司售人员不用填写《入境检疫申明卡》和出示《国际旅行健康检查证明书》或《国际预防接种证书》。( )
没有在财务报表中反映但会减弱公司变现能力的因素有()。
下列各项中,会影响企业管理费用的有()。
下面关于公文写作基本要求中,属于内容范畴的是()。
结合材料回答问题:材料1中国古代思想家说:“夫君者舟也,庶人者水也,水可以载舟,亦可以覆舟。”“乐民之乐者,民亦乐其乐;忧民之忧者,民亦忧其忧。乐以天下,忧以天下,然而不王者,未之有也。”材料2毛泽东指出:“人民,只有人民,才是创造
(2013年上半年)某公司刚刚宣布下个月将要裁员,并且极可能包括张工项目团队里的一些成员。团队成员议论纷纷,已无心正常工作。张工告诉团队:“让我们冷静下来,回到工作上去,也许我们下个月的绩效可以保住我们的工作”。此时,张工采取的冲突解决技术是(49)。
最新回复
(
0
)