首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有 uTb=u1b1+u2b2+…+umbm=0.
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有 uTb=u1b1+u2b2+…+umbm=0.
admin
2020-03-10
107
问题
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且A
T
y=0的任何解向量u均有
u
T
b=u
1
b
1
+u
2
b
2
+…+u
m
b
m
=0.
选项
答案
必要性.把A按列分块为A=[α
1
,α
2
,…,α
n
],其中α
j
(j=1,2,…,n)都是m维列向量,由于方程组Ax=b有解,所以存在向量[k
1
,k
2
,…,k
n
]
T
使 b=k
1
α
1
+k
2
α
2
+…+k
n
α
n
. 又因A
T
=[α
1
,α
2
,…,α
n
]
T
=[*],故满足方程组 A
T
y=0的任何解向量u均有α
j
T
u=0(j=1,2,…,n).因此, u
T
b=b
T
u=k
1
α
1
T
u+k
2
α
2
T
u+…+k
n
α
n
T
u=0. 充分性.由于满足方程组A
T
y=0的任何解向量U均有u
T
b=b
T
u=0,所以u满足方程组 [*] 令r(A)=r,则,r(A
T
)=r.从而方程组A
T
y=0的基础解系含m—r个线性无关的解向量.因为满足方程组A
T
y=0的任何解向量u都满足方程组①,以及满足方程组①的任何解向量u必满足方程组A
T
y=0,所以方程组①与方程组A
T
y=0同解,故方程组①的解空间的维数为m一r.于是 [*]=m一(m一r)=r. 因而r(A)=r[A┆b]=r, 故非齐次线性方程组Ax=b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/oAD4777K
0
考研数学三
相关试题推荐
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是()
设则下列选项中是A的特征向量的是()
微分方程y’’-4y=e2x+x的特解形式为().
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则()正确.
曲线段(如图所示)的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分等于()
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(Ⅰ)在(a,b)内,g(x)≠0;(Ⅱ)在(a,b)内至少存在一点ξ,使。
设随机变量U服从二项分布B(2,),随机变量求随机变量X一Y与X+Y的方差和X与Y的协方差。
求∫arcsinxarccosxdx.
随机试题
焊接下列()钢具有再热裂纹问题。
氧需是指
患者小便黄赤灼热,尿血鲜红,心烦口渴,面赤口疮,夜寐不安,舌红,脉数。其治法是
依据《矿产资源法》,关闭矿山必须提交()。
已经达到预定可使用状态但是尚未办理竣工决算的固定资产,应该()。
乙公司为母公司,甲公司为其子公司。相关资料如下(假定不考虑所得税影响):资料一:2017年1月1日,乙公司以银行存款5800万元自集团外部购入丙公司80%的股份,乙公司与丙公司的原股东没有关联方关系,当日取得其控制权。丙公司2017年1月1日可辨认净资
实物清查的方法有()。
群体规范(华中师大2017年研;华农2010年研)
_______表示显示器在横向(行)上具有的像素点数目。
关于变量作用域,下列叙述中正确的是()。
最新回复
(
0
)