首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有 uTb=u1b1+u2b2+…+umbm=0.
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有 uTb=u1b1+u2b2+…+umbm=0.
admin
2020-03-10
52
问题
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且A
T
y=0的任何解向量u均有
u
T
b=u
1
b
1
+u
2
b
2
+…+u
m
b
m
=0.
选项
答案
必要性.把A按列分块为A=[α
1
,α
2
,…,α
n
],其中α
j
(j=1,2,…,n)都是m维列向量,由于方程组Ax=b有解,所以存在向量[k
1
,k
2
,…,k
n
]
T
使 b=k
1
α
1
+k
2
α
2
+…+k
n
α
n
. 又因A
T
=[α
1
,α
2
,…,α
n
]
T
=[*],故满足方程组 A
T
y=0的任何解向量u均有α
j
T
u=0(j=1,2,…,n).因此, u
T
b=b
T
u=k
1
α
1
T
u+k
2
α
2
T
u+…+k
n
α
n
T
u=0. 充分性.由于满足方程组A
T
y=0的任何解向量U均有u
T
b=b
T
u=0,所以u满足方程组 [*] 令r(A)=r,则,r(A
T
)=r.从而方程组A
T
y=0的基础解系含m—r个线性无关的解向量.因为满足方程组A
T
y=0的任何解向量u都满足方程组①,以及满足方程组①的任何解向量u必满足方程组A
T
y=0,所以方程组①与方程组A
T
y=0同解,故方程组①的解空间的维数为m一r.于是 [*]=m一(m一r)=r. 因而r(A)=r[A┆b]=r, 故非齐次线性方程组Ax=b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/oAD4777K
0
考研数学三
相关试题推荐
设在区间(一∞,+∞)内f(x)>0,且当忌为大于0的常数时有f(x+k)=,则在区间(一∞,+∞)内函数f(c)是()
设有向量组α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10),则该向量组的极大线性无关组是
微分方程y’’-4y=e2x+x的特解形式为().
设随机变量X和Y的方差存在且不等于0,则D(X+Y):DX+DY是X和Y
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则()正确.
设,且f(u,v)具有二阶连续的偏导数,则=_____________________。
设平面D由x+y=,x+y=1及两条坐标轴围成,I1=ln(x+y)3dxdy,I2=(x+y)3dxdy,I3=sin(x+y)3dxdy,则()
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为()
求下列数列极限:
随机试题
关于税法性质的说法,正确的是()
简述计划的编制过程。
局灶性心房颤动的好发部位是
小肠Crohn病的X线征象包括
初始地籍测量是()。
2017年2月21日8时10分许,架子班班长肖某带领架子工尹某和周某3人在14号楼南向20层悬挑脚手架进行拆除作业。肖某在东侧,尹某蹲在脚手架中间位置还没有翻动的防护架板上用扳手拆除悬挑脚手架第二排钢管与横杆扣件螺帽时,横杆松脱,尹某不慎将手压在松脱横杆上
下列关于财产清查的说法,正确的有()。
统计分组的作用有()。
企业当期产生的外币报表折算差额,应在利润表“财务费用”项目中列示。()
已知函数f(x)=cos4x-2sinxcosx-sin4x。当x∈[0,]时,求f(x)的最小值以及取得最小值时x的值。
最新回复
(
0
)