首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
admin
2019-01-15
66
问题
设f(x),g(x)在[a,b]上二阶可导,g
’’
(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
(Ⅰ)在(a,b)内,g(x)≠0;
(Ⅱ)在(a,b)内至少存在一点ξ,使
。
选项
答案
(Ⅰ)假设对任意的c∈(a,b)且g(c)=0。由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上分别运用罗尔定理可得g
’
(ξ
1
)=g
’
(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g
’
(x)在[ξ
1
,ξ
2
]运用罗尔定理,可得g
’’
(ξ
3
)=0(ξ
3
∈(ξ
1
,ξ
2
))。 因已知g
’’
(x)≠0,与题设矛盾,故g(c)≠0,即在(a,b)内,g(x)≠0。 (Ⅱ)构造辅助函数F(x)=f(x)g
’
(x)-f
’
(x)g(x),则有F(a)=0,F(b)=0,在[a,b]上满足罗尔定理。 故至少存在一点ξ∈(a,b),使F
’
(ξ)=f(ξ)g
’’
(ξ)-f
’’
(ξ)g(ξ)=0,即[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/pEP4777K
0
考研数学三
相关试题推荐
(02年)设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
(03年)设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=依概率收敛于_______.
(08年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(07年)设矩阵A=,则A3的秩为_______.
现有K个人在某大楼的一层进人电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
设随机变量X在区间(-1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
已知平面上三条不同直线的方程分别为l1:aχ+2by+3c=0l2:bχ+2cy+3a=0l3:cχ+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
设矩阵A、B的行数都是m,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设函数f(x)在|x|<δ内有定义且|f(x)|≤x2,则f(x)在x=0处().
随机试题
简述非洲地区经济一体化组织的特征。
上尿路结石是指
《中华人民共和国药品管理法》第五十三条规定,国家对其实行特殊管理的药品有麻醉药品、精神药品、医疗用毒性药品和
患者,神思恍惚,魂蒙颠倒,心悸易惊,善悲欲哭,食少乏力,舌色淡,脉细无力。方选
患者23岁,停经3个月,阴道流血2周,查子宫大小超过妊周,阴道可见2cmX2cm紫蓝结节,宫旁无异常,侵葡的分期为
下列行政诉讼原则中,为行政诉讼所特有的、能充分反映行政诉讼的精神和价值取向的是:()
人们相信.属于强震的年代远未结束,因为科学无法给出让人_________的理由。太平洋板块、澳大利亚板块、印度板块,这三个以海洋为主的板块的旋转角速度都在增加,这为大规模地震的爆发_________了足够的能量。已有的研究还表明.全球地震活动显著增强的时间
二次型f(x1,x2,x3)=(x1一2x2)2+4x2x3的矩阵为__________.
设A=(aij)An×n,Aij是A中元素aij的代数余子式.
February5th,2001Mr.TatsuhiloSeoDirector,PersonnelDepartmentSoftwareSuccessNamiki2-8–136-101Tokyo,JapanDear
最新回复
(
0
)