首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
admin
2019-01-15
85
问题
设f(x),g(x)在[a,b]上二阶可导,g
’’
(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
(Ⅰ)在(a,b)内,g(x)≠0;
(Ⅱ)在(a,b)内至少存在一点ξ,使
。
选项
答案
(Ⅰ)假设对任意的c∈(a,b)且g(c)=0。由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上分别运用罗尔定理可得g
’
(ξ
1
)=g
’
(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g
’
(x)在[ξ
1
,ξ
2
]运用罗尔定理,可得g
’’
(ξ
3
)=0(ξ
3
∈(ξ
1
,ξ
2
))。 因已知g
’’
(x)≠0,与题设矛盾,故g(c)≠0,即在(a,b)内,g(x)≠0。 (Ⅱ)构造辅助函数F(x)=f(x)g
’
(x)-f
’
(x)g(x),则有F(a)=0,F(b)=0,在[a,b]上满足罗尔定理。 故至少存在一点ξ∈(a,b),使F
’
(ξ)=f(ξ)g
’’
(ξ)-f
’’
(ξ)g(ξ)=0,即[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/pEP4777K
0
考研数学三
相关试题推荐
(97年)若f(-χ)=f(χ),(-∞<χ<+∞),在(-∞,0)内f′(χ)>0,且f〞(χ)<0,则在(0,+∞)内
(02年)设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
(00年)设A,B是二随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
(10年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(15年)设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_______.
(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.
(89年)设A为n阶方阵且|A|=0,则【】
现有K个人在某大楼的一层进人电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
设A、B都是n阶方阵,且A2=E,B2=E,|A|+|B|=0,证明:|A+B|=0.
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令F(x)=其中选常数C0,使得F(x)在x=c处连续.就下列情形回答F(x)是否是f(
随机试题
以群体为对象,以疾病的群体防治为目的的诊断是
一般资料:求助者,女性,47岁,本科学历,外资企业高级职员。案例介绍:求助者三个月前,偶然得知十七岁的女儿谈恋爱了,男友是外来打工者。老师反映,其女儿经常无故缺课,成绩逐步下降。求助者曾经严厉批评女儿,并去找女儿的男友,让他与女儿断绝来往。常为琐事和女儿
会计小刘按照公司王总通过手机QQ发来的信息,将96万元项目款打入指定账号,事后经过两人的交流,小刘得知王总并没有发送该消息,自己很可能遭遇诈骗,便立即报警。对于上述情况,下列说法正确的是()。
读下图,甲、乙表示两个不同的区域,完成问题。若甲表示我国的东部地带、乙表示中西部地带,则沿箭头①方向在区域问调配的是()。
设计理想住宅,应从科技服务于人类出发,以人类的健康幸福与文明发展为核心。按照上述理念进行设计,住宅区里,人与自然和谐相处,树林、溪流、湿地形成有机整体,为人们提供与大自然亲密接触的良好生态环境;采用高科技的毛细管冷暖传递系统调节室内空气,为人们提供恒温、“
水利工程是用于控制和调配自然界的地表水和地下水,达到除害兴利目的而修建的工程。根据上述定义,下列不涉及水利工程的是:
甲、乙两人在同一天就同样的发明创造提交了专利申请,专利局将分别向各申请人通报有关情况,并提出多种可能采用的解决办法。下列说法中,不可能采用__________。
EditorLauratalkswithMr.Brooksabouthisnewbookonrobotics.Asyoulisten,answerthequestionsorcompletethenotesin
A、Shehasn’tsentresumesyet.B、Shehasn’tgotanyrepliesyet.C、Shehasgotsomenewchances.D、Shehasalreadysignedanew
Wehavechosenwhatwebelievetobethefivemostspectacularnaturalwonders--thosethatarethebiggest,longestormostimpr
最新回复
(
0
)