首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,-1,-1,1)T,β2=(1,-1,1,-1,2)T,β3=
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,-1,-1,1)T,β2=(1,-1,1,-1,2)T,β3=
admin
2017-01-14
42
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,-1,-1,1)
T
,β
2
=(1,-1,1,-1,2)
T
,β
3
=(1,-1,-1,1,1)
T
。求
(Ⅰ)线性方程组(3)
的通解;
(Ⅱ)矩阵C=(A
T
,B
T
)的秩。
选项
答案
(Ⅰ)线性方程组(1)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
3
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*]的解是方程组(1)和(2)的公共解,故考虑线性方程组(4)k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,将其系数矩阵作初等行变换,即 [*] 则方程组(4)的一个基础解系是(-2,0,2,-1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础 解系ξ=-2α
1
+2α
2
=-β
1
+β
3
=(0,-2,0,2,0)
T
。所以方程组(3)的通解为 x=K(0,-1,0,1,0)
T
,其中K为任意常数。 (Ⅱ)线性方程组(3)[*]与线性方程组x
T
(A
T
,B
T
)=0等价,而方程组(3)的基础解系只含一个向量,故矩阵C=(A
T
,B
T
)的秩r(C)=5-1=4。
解析
转载请注明原文地址:https://kaotiyun.com/show/oDu4777K
0
考研数学一
相关试题推荐
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
求y=3-x的n阶导数.
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式丨α1,α2,α3,β1丨=m,丨α1,α2,β2,α3丨=n,则4阶行列式丨α3,α2,α1,β1+β2丨=__________.
设n元线性方程组Ax=b,其中(I)证明行刿式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
因为总体X在区间(0,0)内服从均匀分布,[*]
随机试题
患者,女性,18岁。因“反复皮肤瘀点、瘀斑2周,高热2天”入院。查体:T39.5℃,胸骨压痛(+),浅表淋巴结及肝脾未触及。血象:血红蛋白70g/L,白细胞2.0×109/L,血小板15×109/L;血浆纤维蛋白原1.2g/L,D一二聚体阳性。提问2:
护士语言行为规范的要求包括
电梯由两大系统组成,它们是()。
表1、表2是根据A公司2013年资产负债表及利润表整理的简化表,只列示了部分项目情况(假定无其他因素影响)。A公司2013年度经营活动现金流量净额为()万元。
S城的人非常喜欢喝酒,经常出现酗酒闹事,影响了S城的治安环境。为了改善城市的治安环境,市政府决定减少S城烈酒生产的产量。以下哪项最能对市政府的决定进行质疑?()
在米开朗基罗的雕塑作品“大卫”迎来500岁生日之时,罗伦萨艺术学院为使这位石头“美男子”重新焕发出迷人风采决定对其进行清洗。法拉逖:应该用现代湿洗技术,也就是用少量的水清洗塑像。帕罗齐:雕塑不像人,太多的水会损害它。湿洗方法会进一步腐蚀保护层,故应使用更为
苏轼在《赤壁赋》中写到:“壬戌之秋,七月既望,苏子与客泛舟游于赤壁之下。”在一阕《水调歌头》的序中说:“丙辰中秋,欢饮达旦,大醉,作此篇,兼怀子由。”文中所述的“夜游赤壁”和“中秋夜饮”()。
TheFutureofthePress?1Interestingthingsarehappeninginthepress.Newspapercirculation(销量)inEuropeisfallingandIrel
A、Thelaboratorywasclosed.B、Thegeneratorwasturnedoff.C、Thepowergeneratormightexplode.D、Electricitywasgoingtorun
A、BecauseBloomshasacafé.B、BecauseBloomsofferstwofreeclasses.C、BecauseBloomshastenniscourts.D、BecauseBloomshas
最新回复
(
0
)