首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(
admin
2015-07-24
40
问题
设f(x)在[a,b]上二阶可导,且f"(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f"(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x—x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>O(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/09w4777K
0
考研数学一
相关试题推荐
a=1,b=3(x2+2x+3)/(x-1)-ax-b=[(1-a)x2+(2+a-b)x+b+3]/(x-1),由即a=1,b=3.
设则f{f[f(x)]}等于().
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在且非零,证明:存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+o(x3).
设y=y(χ),z=z(χ)是由方程z=χf(χ+y)和F(χ,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
早晨开始下雪整天不停,中午一辆扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设则f(x)第一类间断点的个数为()
数列的最大项为______.
随机试题
为避免婴儿厌食,婴儿不喜欢吃的就不要做。()
论述如何以习近平生态文明思想为指导建设美丽中国。
人群疾病的自然史研究,可见于下列哪项研究
门静脉高压症病人常见的静脉交通支循环部位不包括()
企业法人的资本金通常以注册资本的方式投入,公司的注册资本由股东上缴,下列关于注册资本表述错误的是()。
下列属于公安机关维护社会治安秩序和社会稳定基本任务的内容的是()。
GDP的概念和三种计算方法。
在高二(1)班的一次联欢活动中,班主任老师说:“小明和小亮都没有参加活动。”班长小杰不同意班主任老师的说法。以下哪项最为准确地表达了班长小杰的意思?
TheBeringStraitBridgewillbeoneofthemostchallengingengineeringprojectsever______.
Althoughblindrageofhumanbeingisperhapstheresultofsurvivalinstinct,strangelyenough,weseldomtakeitouton______
最新回复
(
0
)