首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
admin
2015-08-17
69
问题
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,一1,1]
T
,η
3
+η
1
=[0,2,0]
T
,求该非齐次方程的通解.
选项
答案
r(A)=1,AX=b的通解应为klξ+k2ξ2+η,其中对应齐次方程AX=0的解为ξ
1
=(η
1
+η
2
)一(η
1
+η
2
)=η
2
一η
3
=[-1,3,2]
T
,ξ=(η
2
+η
3
)一(η
3
+η
1
)=η
2
一η
1
=[2,一3,1]
T
.因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系.取AX=b的一个特解为[*]故AX=b的通解为k
1
[-1,3,2]
T
+k
2
[2,一3,1]
T
+[0,1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/AQw4777K
0
考研数学一
相关试题推荐
设z=z(x,y)是由方程z一y—x+xez=0确定的二元函数,求dz.
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
求y=f(x)=的渐近线.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.求A的全部特征值;
求矩阵A=的特征值与特征向量.
随机试题
假如您是一位企业高管,现在有个管理系统的项目,请您简要说说在该系统实施前要做哪些准备工作。
肾病综合征诊断依据,不包括下列哪一项表现
下颌第一双尖牙下颌第三磨牙
矿井地面变电所应当设置在()。
在企业文化中居于核心地位的是()。
荷兰作家布鲁马指出:“德国人理解二战的关键不是在斯大林格勒战役或柏林之战,而是在发现奥斯威辛集中营的那一刻;日本人的理解则不在珍珠港或中途岛之战,而是广岛原子弹。”对这句话理解不正确的一项是()。
精通幼儿生理、心理和教育方面的知识属于教师的()。
计算
Java的I/O流包括字节流、【】、文件流、对象流和管道流。
31.Thefewerrestrictionsthereareontheadvertisingoflegalservices,themorelawyerstherearewhoadvertisetheirservi
最新回复
(
0
)