首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
admin
2014-11-26
79
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且
证明:
(Ⅰ)存在c∈(0,1),使得f(c)=0;
(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);
(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
选项
答案
(Ⅰ)由[*]得 f(0)=0,f
+
’(0)=1,f(1)=0,f
-
’(1)=2.由f
+
’(0)>0,存在x
1
∈(0,1),使得f(x
1
)>f(0)=0;由f
1
’(1)>0,存在x
2
∈(0,1),使得f(x
2
)<f(1)=0.因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(0,1),使得f(c)=0. (Ⅱ)令h(x)=e
x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0,由罗尔定理,存在ξ
1
∈(0,c),ξ
2
∈(c,1),使得h’(ξ
1
)=h’(ξ
2
)=0,而h’(x)=e
x
[f(x)+f’(x)]且e
x
≠0,所以f(ξ
1
)+f’(ξ
1
)=0,f(ξ
2
)+f’(ξ
2
)=0. 令φ(z)=e
-x
[f(x)+f’(x)],因为φ(ξ
1
)=φ(ξ
2
)=0,所以存在ξ∈(ξ
1
,ξ
2
)[*](0,1),使得φ’(ξ)=0,而φ’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,于是f"(ξ)=f(ξ). (Ⅲ)令h(x=)e
x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0. 由罗尔定理,存在η
1
∈(0,c),η
2
∈(c,1),使得h’(η
1
)=h’(η
2
)=0,而 h’(x)=e
-x
[f’(x)一f(x)]且e
-x
≠0,所以f’(η
1
)一f(η
1
)=0,f’(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)一f(x)],因为φ(η
1
)=φ(η
2
)=0,所以存在η∈(η
1
,η
2
)[*](0,1),使得φ’(η)=0,而φ’(x)=e
-2x
[f"(x)一3f’(x)+2f(x)]且e
-2x
≠0,于是 f"(η)一3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oe54777K
0
考研数学一
相关试题推荐
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组Ax=b的通解是().
已知-2是的特征值,其中b(b≠0)是任意常数,则x=________.
设f(x,y)为连续函数,则=().
设f(x,y)在点O(0,0)的某邻域U内连续,且,常数a>.讨论f(0,0)是否为f(x,y)的极值?若是极值,判断是极大值还是极小值?
设函数z=f(u),方程u=ψ(u)+∫yxP(t)dt确定u是x,y的函数,其中f(u),ψ(u)可微,P(t),ψ’(u)连续,且ψ’(u)≠1.求
求微分方程y”一2y’一e2x=0满足条件y(0)一1,y’(0)=1的特解.
设讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求二维随机变量(X,Y)的概率分布.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求已知Y=y时X的条件密度函数;
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
随机试题
构建核心价值体系最重要的是要正确处理社会主义核心价值体系与思想多样性和社会多样化发展的关系,就是要()。
当前,世界所面临的五大社会问题包括资源、环境、粮食、能源和______。
"Igotcancerinmyprostrate."DetectiveAndySipowiczofthefictional15thPrecinct,astoic,bigbearofaman,isclearlyi
对于哮喘持续状态应选用
A、方圆形B、卵圆形C、尖圆形D、椭圆形E、混合型从上颌侧切牙的远中逐渐转向后端,使前牙所连成的牙列较圆,这种牙列形态是
关于建筑使用后评价(POE)的说法,错误的是:
下列关于施工方项目管理目标和任务的表述中,正确的是()。
资料:北京磐石电梯有限公司(1101950188)委托前景国际贸易公司出口一批电梯配件,该批配件属于《机电产品自动进口管理目录》中的商品,《机电产品自动进口许可证》(O:1100-4567024-98601),《出境货物通关单》(B:××××××××××
诚信,是指诚实守信,能够【131】承诺而取得他人信任。诚信是人类社会基本的道德【132】,也是一种非常宝贵的资源。先哲孔子早就提醒人们:“人而无信,不知其可也”,“民无信不立”。北宋神宗时的宰相王安石有诗日:“一言为重百斤轻”,也是极言诚信的重要
A、ThepreviousexperiencewhenhostingOlympics.B、AsimilarinitiativelastyearfromtheMilanWorldExpo.C、Workingexperienc
最新回复
(
0
)