首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件 是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件 是A*b=0.
admin
2018-01-23
43
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件
是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠ 0,所以r(A
*
)=1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而 A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)= [*]=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/ofX4777K
0
考研数学三
相关试题推荐
设某产品的成本函数为C=aq2+bq+c,需求函数为其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b.求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性;(3)需求对价格弹性的绝对值为1时的产量.
为了实现利润最大化,厂商需要对某商品确定其定价模型.设Q为该商品的需求量,P为价格,MC为边际成本.η为需求弹性(η>0).证明定价模型为
设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明(2)利用(1)的结论计算定积分
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在η∈(0,2),使f(η)=f(0);
证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设函数f(x)在[0,1]上连续.在开区间(0,1)内大于零,并且满足又曲线y=f(x)与x=1,y=0所围的图形s的面积值为2,求函数y=f(x),并问a为何值时.图形S绕x轴旋转一周所得旋转体的体积最小.
设A=(a1,a2,a3,a4)为四阶方阵,且a1,a2,a3,a4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).(Ⅰ)求S=S(a)的表达式;(Ⅱ)当口取何值时,面积S(a)最小?
设矩阵有一个特征值是3.求正交矩阵P,使(AP)TAP为对角矩阵;
随机试题
关于美金刚的叙述正确的是
下列不属于目标市场国对产品的强制性要求的是()
类风湿关节炎X线可表现为
患者,女性,30岁。因呼气性呼吸困难入院,诊断为支气管哮喘,护士为患者调节病室的相对湿度应维持在
煤气隔断装置是重要的生产装置,也是重要的安全装置。下列隔断装置属于“能单独使用作为可靠隔断装置”的是()。
下列各项中,属于会计工作管理体制的内容有()。
反映证券组合期望收益水平的总风险水平之间均衡关系的方程式是( )。
我国现阶段的人民民主专政实质上是无产阶级专政,这主要表现在()
A、Fascinating.B、Tedious.C、Interesting.D、Valueless.B女士在听到男士说他的论文主题是香蕉史时大为惊讶,并用嘲讽的口吻挖苦男士,男士随后说:不像你想象的那么无趣啦!可推测女士起初认为男士的研究很无趣,选
Overthepastdecade,Americancompanieshavetriedhardtofindwaystodiscourageseniorfromfeatheringtheirownnestsatth
最新回复
(
0
)