设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明: ∫01[f(x)+x(1-x)f”(x)]dx=0.

admin2022-04-27  71

问题 设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:
01[f(x)+x(1-x)f”(x)]dx=0.

选项

答案由于 ∫01x(x-1)f”(x)dx=∫01x(x-1)d[f’(x)] =(x2-x)f’(x)|x01-∫01(2x-1)f’(x)dx =-∫x01(2x-1)f’(x)dx=-(2x-1)f(x)|x01+2∫x01f(x)dx =2∫x01f(x)dx, 故∫x01[f(x)+[*]x(1-x)f”(x)]dx=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/9LR4777K
0

最新回复(0)