首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-04-18
75
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则 φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
2
),使得 φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
2
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/otk4777K
0
考研数学二
相关试题推荐
[*]
若3a2-5b<0,则方程x5+2ax3+3bx+4c=0().
曲线渐近线的条数为______.
已知函数y=f(x)的导数等于x+2,且x=2时y=5,求这个函数.
计算下列定积分.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
(2008年试题,三)求极限
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
随机试题
患者男性,15岁,左大腿疼痛半月,X线提示左股骨中段溶骨性破坏,周围软组织肿胀。活检示尤文肉瘤。此病最常见的远处转移部位是
当PDA合并哪些心内畸形时,在未纠正心内畸形前不能闭合PDA
“备案号”栏应填:“成交方式”栏应填:
下列可以成为保险标的的是()。
下列属于渐进性变革特点的有()。
参加招聘会的主要步骤包括()。
试计算下列各小题的值(1)已知P(A)=0.4,P(B|A)=0.5,P(A|B)=0.25,则P(B)=________。(2)设事件A和事件B相互独立,A和B都不发生的概率为,A发生B不发生的概率等于B发生A不发生的概率,则P(A)=_
Therewasatimewhentheconceptofcreativitywasonlyassociatedwithwriters,painters,musiciansandsimilarpeopleinarti
A、Thelabourischeaper.B、Globaleconomicsisresurging.C、Transportationbyseaischeaper.D、Thedemandforcocaineisdeclin
Polarbearshuntsealsfromseaice,butcoulddrownifforcedtoswimlongdistancesinopenwater.Satellitephotos【B1】______b
最新回复
(
0
)