首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-04-18
94
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则 φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
2
),使得 φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
2
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/otk4777K
0
考研数学二
相关试题推荐
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
设方程有无穷多个解,则a=________.
A是n阶矩阵,且A3=0,则().
某商品的销售量x是价格P的函数,如果欲使该商品的销售收入在价格变化情况下保持不变,则销售量x对于价格P的函数关系满足什么微分方程?在这种情况下该商品需求量相对价格P的弹性是多少?
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
设f(u,v)具有二阶连续偏导数,且满足
设矩阵A,B满足A*BA=2BA-8E,其中A=,层为单位矩阵,A*为A的伴随矩阵,则B:__________.
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例系数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
下列矩阵中不能相似对角化的是
随机试题
寡头垄断厂商的产品是()
Ourairplanewasjustbesidestheairportbuilding.Itdidnotlooktoostrongtome,butIdecidednottothinkaboutsuchthin
右上侧切牙缺失,间隙小,尖牙根长大,但牙冠1/3缺损,下颌对牙为局部义齿,最好的设计是
A.食管腐蚀伤急性期B.近期严重咯血C.脊髓灰质炎及流感等呼吸道传染病流行季节或流行地区D.白喉带菌者,经保守治疗无效者E.下呼吸道分泌物潴留硬质支气管镜检查的禁忌证
引起小儿秋季腹泻常见的病原体是
符合建筑装饰装修施工技术要求的有()。
用巧克力包裹的华夫饼干
金融约束论同金融抑制论的根本区别是( )。
教育与人的发展、教育与社会的发展是教育学两条基本的矛盾或关系。
Whatkindofdisorderisdyslexia?
最新回复
(
0
)