首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是 ( )
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是 ( )
admin
2020-03-01
39
问题
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是 ( )
选项
A、A—E;A+E
B、A—E;(A+E)
-1
C、A—E;(A+E)
*
D、A—E;(A+E)
T
答案
D
解析
由于(E+A)x=0只有零解,知r(E+A)=n,所以存在(E+A)
-1
且|E+A|≠0.
方法一 因
(A+E)(A—E)=A
2
一E=(A—E)(A+E), (*)
故A+E,A—E可交换,故(A)成立.
(*)式两端各左边、右边乘(A+E)
-1
,得
(A—E)(A+E)
-1
=(A+E)
-1
(A—E), (**)
故(A+E)
-1
,A—E可交换,故(B)成立.
(**)式两边乘|A+E|(数),得
(A—E)(A+E)
*
=(A+E)
*
(A—E),
故(A+E)
*
,A—E可交换,故(C)成立.
由排除法知,应选(D),即(A+E)
T
,A~E不能交换.
方法二 (A+E)(A—E)=(A+E)(A+E一2E)=(A+E)
2
一2(A+E)
=(A+E一2E)(A+E)=(A—E)(A+E).
(A+E)
-1
(A—E)=(A+E)
-1
(A+E一2E)=(A+E)
-1
(A+E)一2(A+E)
-1
=(A+E)(A+E)
-1
一2(A+E)
-1
=(A+E一2E)(A+E)
-1
=(A—E)(A+E)
-1
.
同理 (A+E)
*
(A—E)=(A—E)(A+E)
*
.
故应选(D).
方法三 (D)不成立,可举出反例,如取
则
而
故(A+E)
T
(A-E)≠(A-E)(A+E)
T
,即(D)不成立.
转载请注明原文地址:https://kaotiyun.com/show/oyA4777K
0
考研数学二
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵.若AB=E,则().
设平面区域D由x=0,y=0,x+y=,x+y=1围成,若[ln(x+y)]3dxdy,[sin(x+y)]3dxdy,则I1,I2,I3的大小顺序为()
设函数z(x,y)由方程确定,其中F为可微函数,且F2’≠0,则=()
设函数且λ>0,则∫—∞+∞xf(x)dx=______。
设I1=(x4+y4)dσ,I2=(x4+y4)dσ,I3=2x2y2dσ,则这三个积分的大小顺序是_________<____________<__________.
求极限
[2015年]设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成的旋转体的体积.若V1=V2,求A的值.
设A是m×n阶矩阵,下列命题正确的是().
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴。计算积分23.
若f(-χ)=-f(χ),且在(0,+∞)内f′(χ)>0,f〞(χ)>0,则在(-∞,0)内().
随机试题
简述文化对谈判影响的双重性。
男性患者75岁,因患睾丸癌接受系列治疗,近期出现消化道反应,骨髓抑制,脱发现象,最可能由哪种药物引起
反复发作右中叶肺炎的是
A.6一磷酸葡萄糖脱氢酶B.苹果酸脱氢酶C.丙酮酸脱氢酶D.NADH脱氢酶E.葡萄糖一6一磷酸酶属于三羧酸循环的酶是()
督脉的基本功能
A.变更登记B.缴销C.变相销售D.调剂使用E.SDA批准医疗机构新增配制剂型的,应按规定办理《医疗机构制剂许可证》()
施工投标资格审查办法包括()。
下列土地中,免征城镇土地使用税的是()。
议论文写作指导课上,教师讲解论证的基本结构层次,即“三段论结构”,下列不适合作为三段论结构的是()。
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”作答。二、给定资料
最新回复
(
0
)