首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2019-03-21
62
问题
二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX在正交变换X=QY下化为10y
1
2
-4y
2
2
-4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
(1)Q的第1列α
1
=[*]是A的属于10的特征向量,其[*]倍η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于-4的特征向量和(1,2,3)
T
正交,因此就是方程 χ
1
+2χ
2
+3χ
3
=0 的非零解.求出此方程的一个正交基础解系η
2
=(2,-1,0)
T
,η
3
=(1,2,-[*])
T
. 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,-4η
2
,-4η
3
),用初等变换法解得 A=[*] (2)将η
2
,η
3
单位化得α
2
=[*](2,-1,0)
T
,α
3
=[*](3,6,-5)
T
. 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/nmV4777K
0
考研数学二
相关试题推荐
“对任意给定ε∈(0,1),总存在正整数N,当n>N时,恒有|xn一a|≤2ε”是数列{xn}收敛于a的
求微分方程xy’+y=xex满足y(1)=1的特解.
设A=(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设f(x)有连续导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2一t2)f(t)dt,且当x→0时,F’(x)与xk是同阶无穷小,则k等于
设k为常数,则=________.
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
设A为3阶矩阵,α1,α2,α3是线性的无关3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
求∫arcsinex/exdx
(01年)已知函数y=f(x)在其定义域内可导,它的图形如图2.3所示,则其导函数y=f’(x)的图形为
随机试题
针对固定资产的所有权或者控制权目标,注册会计师通常实施检查程序,下列相关说法中正确的有()。
LivinginthecentralAustraliandeserthasitsproblems,______obtainingwaterisnottheleast.
关于吸入性肺脓肿,不正确的是
术后早期活动的优点,下列哪种说法不正确()。
A.抑制肾小球滤过B.直接抑制肾小管H+-Na+交换C.直接抑制肾小管I+-Na+交换D.抑制碳酸酐酶活性E.拮抗醛固酮的作用螺内酯(安体舒通)的利尿作用机制是()
配伍变化的处理方法主要有
父母与多对已婚子女共同居住生活的家庭类型属于()。
使主机从外部获取信息的设备称为()。
在一项关于失眠人群的调查中发现,绝大多数失眠者都有深夜打电话聊天的习惯,部分人甚至夜里的一通电话打到四五个小时之久。因此有人得出结论“深夜打电话这种不良习惯是导致失眠的主要原因”。以下哪项对这一结论进行了最严重的削弱?()
设∫f(x)dx=x3+C,则∫x2f(1-x3)dx等于()
最新回复
(
0
)