首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴。 求曲线y=y(x)的表达式
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴。 求曲线y=y(x)的表达式
admin
2019-05-27
54
问题
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e
-x
的一个特解,此曲线经过原点且在原点处的切线平行于x轴。
求曲线y=y(x)的表达式
选项
答案
微分方程的特征方程为2λ
2
+λ-1=0,特征值为λ
1
=-1,λ
2
=1/2,则微分方程2y"+y’-y=0的通解为[*] 令非其次线性微分方程2y"+y’-y=(4-6x)e
-x
的特解为y
0
(x)=x(ax+b)e
-x
,带入原方程得a=1,b=0,故原方程的特解为y
0
(x)=x
2
e
-x
,原方程的通解为[*] 由初始条件y(0)=y’(0)=0得C
1
=C
2
=0,故y=x
2
e
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/LcV4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,且|A|=0,则A().
设f(x,y)=则fx’(2,1)=()
一个容器的内表面侧面由曲线x=(0≤x≤2,y>0)绕x轴旋转而成,外表面由曲线x=在点(2,)的切线位于点(2,)与x轴交点之间的部分绕x轴旋转而成,此容器材质的密度为μ,求此容器自身的质量M及其内表面的面积S.
设f(x)在(0,+∞)内一阶连续可微,且对x∈(0,+∞)满足x∫01f(xt)dt=2∫0xf(t)dt+xf(x)+x3,又f(1)=0,求f(x).
计算,其中D是由x2+y2=4与x2+(y+1)2=1围成的区域.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设产品的需求函数和供给函数分别为Qd=14-2P,Qs=-4+2P若厂商以供需一致来控制产量,政府对产品征收的税率为t,求:(1)t为何值时.征税收益最大,最大值是多少?(2)征税前后的均衡价格和均衡产量.
设z=f(x-y+g(x-y-z)),其中f,g可微,求
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
随机试题
将一长度为l的线段任意截成三段,设p1为所截的三线段能构成三角形的概率,p2为所截的三线段不能构成三角形的概率,则下列选项正确的是:
心脏有一结构叫卵圆窝,在什么解剖结构上
最易出现斜坡骨质侵蚀的肿瘤是
抢救措施中,最重要的应为若不采用上述治疗措施,该患者则可能发生
选项所列哪些情形是不得行使代位求偿权的?()
公告和通告的共同特点是()。
初步核算,2008年某省实现生产总值(GDP)31072.1亿元,按可比价格计算,比上年增长12.19%,增幅回落2.2%。其中,第一产业增加值3002.7亿元,增长5.1%;第二产业增加值17702.2亿元,增长12.1%;第三产业增加值10367.2亿
如果二氧化碳气体超量产生,就会在大气层中聚集,使全球气候出现令人讨厌的温室效应。在绿色植被覆盖的地方,特别是在森林中,通过光合作用,绿色植被吸收空气中的二氧化碳,放出氧气。因此,从这个意义上,绿色植被特别是森林的破坏,就意味着再“生产”二氧化碳。工厂中对由
TheOpenUniversityinBritain1In1963theleaderoftheLabourPartymadeaspeechexplainingplansfora"universityofthe
Wemusthavereceivedtheletteryesterday,butitdidn’tarrive.
最新回复
(
0
)