首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1)。证明:存在ξ∈(0,1),使得2∫01f(x)dx=f(0)+f(1)+。
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1)。证明:存在ξ∈(0,1),使得2∫01f(x)dx=f(0)+f(1)+。
admin
2021-01-31
82
问题
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1)。证明:存在ξ∈(0,1),使得2∫
0
1
f(x)dx=f(0)+f(1)+
。
选项
答案
令F(x)=∫
0
x
f(t)dt,则F(x)三阶连续可导且F’(x)=f(x),由泰勒公式得 [*] 上下两式相减得F(1)-F(0)=(1/2)[f(0)+f(1)]十(1/48)[f"(ξ
1
)+f"(ξ
2
)], 即∫
0
1
f(x)dx=(1/2)[f(0)+f(1)]+(1/48)[f"(ξ
1
)+f"(ξ
2
)], 因为f"(x)∈C[ξ
1
,ξ
2
],所以f"(x)在[ξ
1
,ξ
2
]上取到最大值M和最小值m, 于是2m≤f"(ξ
1
)+f"(ξ
2
)≤2M或m≤[f"(ξ
1
)+f"(ξ
2
)]/2≤M
1
, 由介值定理,存在ξ∈[ξ
1
,ξ
2
]∈(0,1),使得f"(ξ)=[f"(ξ
1
)+f"(ξ
2
)]/2, 故有2∫
0
1
f(x)dx=f(0)+f(1)+(1/12)f"(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/p4x4777K
0
考研数学三
相关试题推荐
已知矩阵A=相似.求x,y.
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
设方程exy+Y2=cosx确定y的x的函数,则
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,若f(x,y)在D内没有零点,则f(x,y)在D上().
求通过点(1,1)的曲线方程y=f(x)(f(x)>0),使此曲线在[1,x]上所形成的曲边梯形面积的值等于曲线终点的横坐标x与纵坐标y之比的2倍减去2,其中x≥1.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
设函数f(x)任点x=a处可导,则函数丨f(x)丨在点x=a处不可导的允分条件是
设(X1,X2,X6)为来自总体X的简单随机样本,则下列不是统计量的是().
设A,B,C是相互独立的随机事件,且0<P(C)<1,则下列给出的四对事件中不相互独立的是().
二次型f(x1,x2,…,xn)=XTAX,其中AT=A,则f(x1,x2,…,xn)为正定二次型的充分必要条件是().
随机试题
()的出现代表心理的发生。
在书写护理诊断中,“睡眠型态紊乱”可能与住院后环境改变有关,其可能与住院后环境改变有关是属于()
我国封建社会占支配地位的封建土地所有制形式是()
_____________,征人蓟北空回首。《燕歌行》
A.呼吸困难B.呕吐C.腰痛D.肌肉震颤E.腹泻属呼吸系统疾病问诊内容的是
有关凝血因子Ⅱ正确的说法是
选择哪种抗结核药物除了抗结核药物之外,还必须使用
A.耐药性B.耐受性C.致敏性D.首剂现象E.依赖性哌唑嗪具有
下列不属于初始地籍调查的准备工作的是()。
若19a+98b=0,则ab是( )。
最新回复
(
0
)