首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2022-10-25
64
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0.设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x-x
1
)f(x)dx≠0.而∫
0
π
sin(x-x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx=sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所以f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔定理,存在ξ∈(x
1
,x
2
)∈(0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/vIC4777K
0
考研数学三
相关试题推荐
微分方程yˊˊ+y=-2x的通解为________.
1一a+a2一a3+a4一a5.先把第2,3,4,5行都加至第1行,再按第1行展开,得D5=1一aD4,一般地有Dn=1—aDn-1(n≥2),并应用此递推公式.
设f(x,y)=.则f(x,y)在点(0,0)处()
=__________.
[*]
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
证明:=1.
设A,B分别为m×n及n×s阶矩阵,且AB=0.证明:r(A)+r(B)≤n.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[一a,a],使得
随机试题
国家对钢铁、有色金属、建材、化工和其他主要耗能行业的企业,分淘汰、限制、允许和鼓励类实行差别电价政策,这是国家利用()对节约能源实行激励措施。
某企业发行2年期债券,每张面值1000元,票面利率10%,每年计息4次,到期一次还本付息,则该债券的终值为()元。
证券公司因包销而购入售后剩余股票达到股份有限公司已发行股份的11%,其持有的该部分股票在此后陆续卖出的行为应如何认定?()
某投资公司投资一幢政府办公楼,决定采用公开招标方式选择施工单位,但招标文件对省内施工单位和省外施工单位提出不同要求,也明确了投标保证金的数额。该公司委托某建筑事务所为该工程编制标底,标底的金额为6000万元。于2004年1月发出招标公告,后有甲、乙、丙、丁
提单号为GUK—6。( )收货人或代理人报检时须向检验检疫机构递交“3C”证书。( )
莫迪格利安尼和米勒分析了在无公司税时企业的资本结构与企业价值及综合资本成本之间的关系,其基本思想是( )。
一菱形土地的面积为平方公里,菱形的最小角为60度。如果要将这一菱形土地向外扩张变成一正方形土地,问正方形土地边长最小为多少公里?()
下列关于各种软件开发方法的叙述中,错误的是______。
将考生文件夹下KENT文件夹中的文件MONITOR.CDX移动到考生文件夹下KUNTER文件夹中,并改名为CONSOIE.CDX。
Thesunisshiningintheskyandsendingout______lightandheat.
最新回复
(
0
)