首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,-1,a+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?
[2003年] 设向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,-1,a+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?
admin
2019-04-28
31
问题
[2003年] 设向量组(I):α
1
=[1,0,2]
T
,α
2
=[1,1,3]
T
,α
3
=[1,-1,a+2]
T
和向量组(Ⅱ):β
1
=[1,2,a+3]
T
,β
2
=[2,1,a+6]
T
,β
3
=[2,1,a+4]
T
.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?
选项
答案
解一 因[*] 故方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=α
i
(i=1,2,3)均有唯一解,因而对任意a,向量组(I)可用向量组(Ⅱ)线性表出.但 [*] 当a+1≠0即a≠-1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)有唯一解.因而β
1
,β
2
,β
3
可用α
1
,α
2
,α
3
线性表出,于是得到当a≠-1时向量组(I)和向量组(Ⅱ)等价.但当a=-1时,有 [*] 秩([α
1
,α
2
,α
3
])=2≠秩([α
1
,α
2
,α
3
])+1=秩([α
1
,α
2
,α
3
,β
1
])=3,故β
1
不能用α
1
,α
2
,α
3
线性表出.因而向量组(I)和向量组(Ⅱ)不等价. 解二 以α
1
,α
2
,α
3
,β
1
,β
2
,β
3
为列向量构造矩阵A,用初等行变换将其化为行阶梯形矩阵: [*] (1)当a+1=0即a=-1时,[*]显然β
1
与β
3
不能由 α
1
,α
2
,α
3
线性表示,故α
1
,α
2
,α
3
与β
1
,β
2
,β
3
不等价. (2)当a+1≠0时,有 [*] 因而β
1
,β
2
,β
3
可由α
1
,α
2
,α
3
线性表示,且 β
1
=[(1-2a)/(a+1)]α
1
+[(3a+1)I(a+1)]α
2
+[(a-1)/(a+1)]α
3
, β
2
=(-1)α
1
+2α
2
+aα
3
, β
3
=[(3-2a)/(a+1)]α
1
+[2a/(a+1)]α
2
+[(a-1)/(a+1)]α
3
. 以β
1
,β
2
,β
3
,α
1
,α
2
,α
3
为列向量构造矩阵B,用初等行变换将其化为行最简形矩阵,得到 [*] 可见 α
1
=(-1/3)β
1
+[(1-a)/6]β
2
+[(3+a)/6]β
3
, α
2
=(1/3)β
1
+[(1-a)/3]β
2
+(a/3)β
3
, α
3
=(-1)β
1
+[(1+a)/2]β
2
+[(1-a)/2]β
3
, 因而对任意a,向量组(I)可用向量组(Ⅱ)线性表示.于是当a≠-1时,这两组向量可互相线性表示,即 [α
1
,α
2
,α
3
]≌[β
1
,β
2
,β
3
].
解析
转载请注明原文地址:https://kaotiyun.com/show/p7P4777K
0
考研数学三
相关试题推荐
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设线性相关,则a=______.
设an为发散的正项级数,令Sn=a1+a2+…+an(n=1,2,…).证明:收敛.
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
计算dxdy,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设A=方程组AX=B有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
随机试题
供应商关系管理
外感咳嗽的病因是
对于工程施工项目招标程序,叙述错误的有()。
票据属于()。
安徽黄山以()四绝闻名于世。
请认真阅读下列材料,并按要求作答。问题:依据拟定的教学目标与教学重点,设计导入环节与新授环节的教学活动。
1956年4月,毛泽东首次提出探索适合我国国情的社会主义建设道路的著作是《关于党在过渡时期的总路线》。()
软件工程学涉及到软件开发技术和工程管理两方面的内容,下述内容中()不属于开发技术的范畴。
微机上广泛使用的Windows是()。
【B1】【B15】
最新回复
(
0
)