首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
admin
2017-12-31
70
问题
设向量组α
1
,…,α
n
为两两正交的非零向量组,证明:α
1
,…:α
n
线性无关,举例说明逆命题不成立.
选项
答案
令k
1
α
1
+…+k
n
α
n
=0,由α
1
,…,α
n
两两正交及(α
1
,k
1
α
1
+…+k
n
α
n
)=0,得 k
1
(α
1
,α
1
)=0,而(α
1
,α
1
)|α
1
|
2
>0,于是k
1
=0, 同理可证k
2
=…=k
n
=0, 故α
1
,…,α
n
线性无关.令[*],显然α
1
,α
2
线性无关,但α
1
,α
2
不正交.
解析
转载请注明原文地址:https://kaotiyun.com/show/sDX4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α1+α3,Aα3=2α2+3α3求可逆矩阵P,使得P-1AP为对角矩阵。
若二次型f(x1,x2,x3)一2x12+x22+x23+2x1x2+tx2x3是正定的,则t的取值范围是________。
设3阶矩阵B≠0,且B的每一列都是以下方程组的解:求λ的值;
设有3维列向量问λ取何值时β不能由α1,α2,α3线性表示?
设有3维列向量问λ取何值时β可由α1,α2,α3线性表示,但表达式不唯一?
设A为3阶实对称矩阵,且满足条件A2+2A=0,A的秩r(A)=2.求A的全部特征值;
设矩阵矩阵B=(kE+A)2,其中足为实数,E为单位矩阵。求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵。
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,一1,1)T,α2=(1,一2,一1)T。求矩阵A。
已知下列非齐次线性方程组(Ⅰ)(Ⅱ):求解方程组(Ⅰ),用其导出组的基础解系表示通解;
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)T+k2(一1,2,2,1)T。求线性方程组(Ⅰ)的基础解系;
随机试题
关于图书书稿审稿后编辑与作者的联系,说法错误的是()。
我国某进出口公司甲(卖方)与美国某贸易公司乙(买方)以CIF芝加哥条件签订了一份出口5000吨小麦的合同。货物由中国人民保险公司办理了海洋运输货物保险后按时由承运人天建国际海洋运输公司装船运输。因在海上遭遇暴风雨袭击,迟延四个星期到达目的港,并因船员的过失
患者,男性,36岁。中午饮酒后突然出现上腹中部剧烈刀割样疼痛,向腰背部呈带状放射,继而呕出胆汁,伴高热。急诊入院体检:急性痛苦面容,全腹疼痛,腹肌紧张。紧急处理措施中最重要的是
某化合物的结构式为,该有机化合物不能发生的化学反应类型是()。
机械设备进场前,承包单位应向项目()报送进场设备清单。
注册地与实际管理机构所在地均在法国的某银行,取得的下列各项所得中,应按规定缴纳我国企业所得税的有()。
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f′(c)|≤2a+b/2.
Mysisteristhreeyears________thanme.
新名词
Smalldogsgenerallylivelongerthanbigdogs.Butbodysizeisn’ttheonlyfactorthatdetermineshowlongdogssurvive.Perso
最新回复
(
0
)