首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
admin
2017-12-31
62
问题
设向量组α
1
,…,α
n
为两两正交的非零向量组,证明:α
1
,…:α
n
线性无关,举例说明逆命题不成立.
选项
答案
令k
1
α
1
+…+k
n
α
n
=0,由α
1
,…,α
n
两两正交及(α
1
,k
1
α
1
+…+k
n
α
n
)=0,得 k
1
(α
1
,α
1
)=0,而(α
1
,α
1
)|α
1
|
2
>0,于是k
1
=0, 同理可证k
2
=…=k
n
=0, 故α
1
,…,α
n
线性无关.令[*],显然α
1
,α
2
线性无关,但α
1
,α
2
不正交.
解析
转载请注明原文地址:https://kaotiyun.com/show/sDX4777K
0
考研数学三
相关试题推荐
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵。
设3阶矩阵B≠0,且B的每一列都是以下方程组的解:证明|B|=0.
设向量α=(α1α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT。求:A2;
设n维实向量α=(a1,a2,…,an)T≠0,方阵A=ααT(1)证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求可逆矩阵P-1使P-1AP成对角矩阵。
证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求最大值点及最小值点。
设X的密度为求:(1)常数C和X的分布函数F(x);(2)P(0≤X≤1)及Y=e-|X|的密度fY(y)。
设随机变量X的分布函数为其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)当β=2时,求未知参数α的最大似然估计量。
曲线
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
随机试题
要使市场机制正常发挥作用,需要具备哪些条件?
用于表彰个体或群体的先进人物,公布他们的事迹,宣布给他们的奖励,分析他们的先进思想,指出应该向他们学习什么,用()
女性40岁,有胆囊结石病史2小时前,无诱因突发上腹剧痛向腰背部放散。伴恶心、呕吐。查体:体温37.5℃,巩膜无黄染,上腹部压痛;反跳痛,以中腹偏左为重。血淀粉酶1024U/dl,尿胆红素(++)。B超显示:胆囊3cm×7cm,多发强回声伴声影,0.5~0.
A、4~6周B、8~10周C、12周D、16周E、20周正常妊娠时,绒毛膜促性腺激素开始下降,是在末次月经后的
侦查人员询问证人时,正确的做法是:
下列对城市建设和房地产开发描述正确的是()。
索赔费用的计算方法有()。
在实践中,个人住房贷款期限在1年以上的,合同期内遇法定利率调整时,银行多是于()起,按相应的利率档次执行新的利率规定。
A公司于2010年7月1日发行2年期、面值总额为1800万元的—次还本、分期付息的债券,债券票面半年利率为2%,发行收入总额为1733.12万元,实际半年利率为3%。A公司每半年计息并付息—次。A公司将发行的公司债券划分为以摊余成本计量的金融负债。要求:
汽车站的1路车20分钟发一次车,5路车15分钟发一次车,两车于8:00同时发车后,再遇到同时发车至少再过______.
最新回复
(
0
)