首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2016-10-13
54
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
x
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
x
f(tx)dt+e=0,可化为 f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e1=0, 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=一1,λ
2
=一2, 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 今f"(x)+3f’(x)+2f(x)=e的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=一1得C
1
=0,C
2
=1,故原方程的解为 f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/pBu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 D
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
用泰勒公式求下列极限:
设n维向量α=(a,0,…,0,a)T,a
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设某产品的指标服从正态分布,它的标准差为σ=100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平α=0.05下,能否认为这批产品的指标的期望值μ不低于1600.
随机试题
短期目标是长期目标的过程分解为连续的若干个小步骤,每个小步骤就是一个()
(59~63题共用题干)女性,60岁,患慢性肾炎8年。近日水肿加重,经常恶心、尿少,血压170/97mmHg,血尿素氮23mmol/L,肌酐460mmol/L,肾小球滤过率25m1/min,诊断为慢性肾衰竭尿毒症期。尿毒症营养治疗的基本原则是增加必需氨基酸
WHO龋病流行程度属高的标准是
儿童性早熟的诊断依据不包括
A.降钙素B.多巴胺C.缩宫素D.维生素DE.乙酰胆碱属于32肽的是()
电磁波中,()频段俗称高频辐射。
项目目标可分解为工期目标、成本目标和()。
“剪切”、“复制”、“粘贴”命令的快捷键分别为______、______、______。
Whoisthemanprobablytalkingto?
ThanksgivingDayiscelebratedwithalotof【C1】______andmerry-makinginAmerica.CelebratedonthefourthThursdayinthe
最新回复
(
0
)