首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程y"-4y’+8y=e2x(1+cos2x)的特解可设为y*=( )
微分方程y"-4y’+8y=e2x(1+cos2x)的特解可设为y*=( )
admin
2018-04-14
105
问题
微分方程y"-4y’+8y=e
2x
(1+cos2x)的特解可设为y
*
=( )
选项
A、Ae
2x
+e
2x
(Bcos2x+Csin2x)。
B、Axe
2x
+e
2x
(Bcos2x+Csin2x)。
C、Ae
2x
+xe
2x
(Bcos2x+Csin2x)。
D、Axe
2x
+xe
2x
(Bcos2x+Csin2x)。
答案
C
解析
原微分方程对应的齐次微分方程的特征方程为λ
2
-4λ+8=0,特征根为λ=2±2i,将非齐次微分方程拆分为
y"-4y’+8y=e
2x
…(1)与y"-4y’+8y=e
2x
cos2x…(2)。
方程(1)的特解可设为y
1
*
=Ae
2x
,方程(2)的特解可设为y
2
*
=xe
2x
(Bcos2x+Csin2x),由解的叠加原理可知原方程的特解可设为y
*
=Ae
2x
+xe
2x
(Bcos2x+Csin2x),故选C。
转载请注明原文地址:https://kaotiyun.com/show/pCk4777K
0
考研数学二
相关试题推荐
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.
微分方程ydx+(x2-4x)dy=0的通解为_______.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
由题设,先求曲线在点(0,1)处的切线的斜率,由已知x=0,,y=1时,t=0.[*]
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.求曲线y=f(x)的方程;
(2000年试题,二)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
(2011年试题,二)设平面区域D由直线y=x,圆x2+y2=2y及y轴所组成,则二重积分
(1999年试题,十)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明数列{an}的极限存在.
随机试题
曲线y=x4-3在点(1,﹣2)处的切线方程为()
三叉神经痛的表现是
对生物利用度概念错误的叙述是
抗震设计时,钢筋混凝土构造柱、芯柱、圈梁等的混凝土强度等级不应低于()。
为了控制特种风险的赔偿责任,保险人可规定()。
在紧急或困难情况下表现出来的镇定、果断等属于性格的__________特征。
中小学心理健康教育是素质教育的重要组成部分,请简述心理健康教育有哪些基本任务。
23,56,79,135,()
南宋庆元年间,某地发生一桩“杀妻案”。死者丈夫甲被当地州府逮捕,受尽拷掠,只得招认“杀妻事实”。但在该案提交本路(路为宋代设置的地位高于州县的地方行政区域)提刑司审核时,甲推翻原口供。断然否认杀妻指控。问题:对甲翻供行为,应该按照什么制度处理?
已知微分方程y’+y=f(x),其中f(x)=,求该微分方程的解y=y(x)满足y(0)=0.
最新回复
(
0
)