首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
曲面(z-a)φ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=__________(其中φ为连续正值函数,a>0,b>0).
曲面(z-a)φ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=__________(其中φ为连续正值函数,a>0,b>0).
admin
2013-09-03
66
问题
曲面(z-a)φ(x)+(z-b)φ(y)=0与x
2
+y
2
=1,z=0所围立体的体积V=__________(其中φ为连续正值函数,a>0,b>0).
选项
答案
1/2π(a+b)
解析
曲面的方程为:z=
故
因D:x
2
+y
2
≤1,对x,y具有轮换对称性,故
则
转载请注明原文地址:https://kaotiyun.com/show/pD54777K
0
考研数学一
相关试题推荐
(2014年)设f(χ)是周期为4的可导奇函数,且f′(χ)=2(χ-1),χ∈[0,2],则f(7)=_______.
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ)Ax=0和(Ⅱ)ATAx=0,必有()
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设函数f(x)处处可导,且(k>0为常数),又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
双纽线r2=a2cos2θ(a>0)绕极轴旋转一周所围成的旋转曲面面积S=________.
设α(x)=dt,β(x)=dt,则当x→0+时,α(x)是β(x)的().
适当选取函数ψ(x),作变量代换y=ψ(x)u,将y关于x的微分方程化为u关于x的二阶常系数齐次线性微分方程,求ψ(x)及常数λ,并求原方程满足y(0)=1,y’(0)=0的特解.
随机试题
青春期与围绝经期功血治疗原则的不同点是()
酚妥拉明是
Justtellmewhatsubjectyou’dlikemeto______sothatIcouldgetsomenotesready.
开展党的群众路线教育实践活动的主要任务是聚焦到()上。
整个人类社会都离不开警察,原始社会以及将来的共产主义社会都会有警察的存在。( )
歌德评价帕格尼尼“在琴弦上展现了火一样的灵魂”。巴黎人为他的琴声陶醉,忘记了当时正在流行的霍乱。在维也纳,一个盲人听到他的琴声,以为是一个乐队在演奏,当得知这只是一个叫帕格尼尼的意大利人用一把小提琴奏出的声音时,盲人大叫一声:“这是个魔鬼!”这段文
英国每日邮报报道.在前往Azasskava洞穴的探险中,参与者发现了雪人的脚印,以及各种雪人用来表示他占领领地的标记——折断的树枝,另外在位于克麦罗沃地区某洞穴发现了灰色“头发”样本。据此.俄罗斯当局宣称雪人正生活在西伯利亚。下列哪项如果为真,最能质疑俄罗
ThereisasubstantialbodyofevidenceshowingthatHIVcausesAIDS—andthatantiretroviraltreatment(ART)hasturnedtheviral
在OSI七层协议中,_____________充当了翻译官的角色,确保一个数据对象能在网络中的计算机间以双方协商的格式进行准确的数据转换和加解密。
Themantowhomwehandedtheformspointedoutthattheyhadnotbeen______filledin.
最新回复
(
0
)