首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
admin
2021-02-25
81
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
选项
答案
证法1:用定义证明.将矩阵B按列分块,得B=(β
1
,β
2
,…,β
n
),若有一组数k
1
,k
2
,…,k
n
,使得 k
1
β
1
+k
2
β
2
+…+k
n
β
n
=0, 则 [*] 由于AB=E,在等式两端左乘矩阵A得 [*] 即k
1
=0,k
2
=0,…,k
n
=0,从而向量组β
1
,β
2
,…,β
n
线性无关. 证法2:由于B是m×n矩阵,所以r(B)≤n,另一方面, r(B)≥r(AB)=r(E)=n, 所以r(B)=n,故B的列向量组β
1
,β
2
,…,β
n
线性无关.
解析
本题考查向量组线性无关的概念和抽象的向量组线性相关性的证明方法.可以用向量组线性相关性的定义证明,也可以用矩阵的秩进行证明.
转载请注明原文地址:https://kaotiyun.com/show/Fi84777K
0
考研数学二
相关试题推荐
证明n维向量α1,α2……αn线性无关的充要条件是
证明
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
随机试题
晶状体变厚时,其折光能力①____________,以适应看②____________物。
Mostpersonnelmanagersagreethatjobinterviewsareoneoftheleastobjectiverecruitmentmethods.Buttheadvantagesoftest
某人呼吸频率从12次/分增加到24次/分,潮气量从500ml减少到250ml,则
代办股份转让服务业务,从基本特征看,可以在证券交易所挂牌,也可以通过证券公司进行交易。( )
能综合反映项目计算期内各年末资产、负债、所有者权益的增减变化和对应关系,以考察项目资产、负债、所有者权益的结构是否合理,计算资产负债率、流动比率、速动比率等指标进行清偿能力分析的财务报表是()
副产品,是指在同一生产过程中,使用同种原料,在生产主产品的同时附带生产出来的非主要产品。()
我国下列省级行政区中,受寒潮影响较小的是()。
SomeoftheconcernssurroundingTurkey’sapplicationtojointheEuropeanUnion,tobe(1)_____onbytheEU’sCouncilofMinis
Whatdoesthewomanwanttodo?
What’stheproblembeingdiscussedinthisconversation?
最新回复
(
0
)