首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
admin
2021-02-25
65
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
选项
答案
证法1:用定义证明.将矩阵B按列分块,得B=(β
1
,β
2
,…,β
n
),若有一组数k
1
,k
2
,…,k
n
,使得 k
1
β
1
+k
2
β
2
+…+k
n
β
n
=0, 则 [*] 由于AB=E,在等式两端左乘矩阵A得 [*] 即k
1
=0,k
2
=0,…,k
n
=0,从而向量组β
1
,β
2
,…,β
n
线性无关. 证法2:由于B是m×n矩阵,所以r(B)≤n,另一方面, r(B)≥r(AB)=r(E)=n, 所以r(B)=n,故B的列向量组β
1
,β
2
,…,β
n
线性无关.
解析
本题考查向量组线性无关的概念和抽象的向量组线性相关性的证明方法.可以用向量组线性相关性的定义证明,也可以用矩阵的秩进行证明.
转载请注明原文地址:https://kaotiyun.com/show/Fi84777K
0
考研数学二
相关试题推荐
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
对行满秩矩阵Am×n,必有列满秩矩阵Bn×m,使AB=E.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
随机试题
花岗石属于()石材。
课程、教科书、教学参考书等属于教育基本要素中的()
一初中男生,突感下腹部及阴囊痛,伴恶心、呕吐,3小时后入院就诊,血尿常规检查:未见异常。若超声为右髂窝少量液体,可见一低回声不均质包块,内部回声似肠管回声,追问病史该患既往下腹部经常在剧烈运动时出现包块,平卧后包块消失。我们首先考虑
在考核临床疗效的一项实验设计中,下列哪项是不恰当的
苯甲酸的抑菌机制是
进行建设项目财务现金流量分析时,若采用的折现率提高,则()。
中国结算上海分公司在()进行T日交易的资金交收。
下列关于从价计征房产税计算的相关规定,表述正确的有()。
“君问归期未有期,巴山夜雨涨秋池。何当共剪西窗烛,却话巴山夜雨时。”这首《夜雨寄北》是晚唐诗人李商隐的名作。一般认为这是一封“家书”,当时诗人身处巴蜀,妻子在长安,所以说“寄北”。但有学者提出,这首诗实际上是寄给友人的。以下哪项如果为真,最能支持以上学者的
Inordertobuyherhouseshehadtoobtaina______fromthebank.
最新回复
(
0
)