首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
admin
2021-02-25
50
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
选项
答案
证法1:用定义证明.将矩阵B按列分块,得B=(β
1
,β
2
,…,β
n
),若有一组数k
1
,k
2
,…,k
n
,使得 k
1
β
1
+k
2
β
2
+…+k
n
β
n
=0, 则 [*] 由于AB=E,在等式两端左乘矩阵A得 [*] 即k
1
=0,k
2
=0,…,k
n
=0,从而向量组β
1
,β
2
,…,β
n
线性无关. 证法2:由于B是m×n矩阵,所以r(B)≤n,另一方面, r(B)≥r(AB)=r(E)=n, 所以r(B)=n,故B的列向量组β
1
,β
2
,…,β
n
线性无关.
解析
本题考查向量组线性无关的概念和抽象的向量组线性相关性的证明方法.可以用向量组线性相关性的定义证明,也可以用矩阵的秩进行证明.
转载请注明原文地址:https://kaotiyun.com/show/Fi84777K
0
考研数学二
相关试题推荐
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
对行满秩矩阵Am×n,必有列满秩矩阵Bn×m,使AB=E.
设自动生产线加工的某种零件的内径X(单位:mm)服从正态分布N(μ,1),内径小于10mm或大于12mm为不合格品,其余为合格品.销售合格品获利,销售不合格品亏损,已知一个零件的销售利润T元与X有如下关系:T=,问平均内径μ取何值时,销售一个零件的平均获利
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
随机试题
女,45岁,术后行PCA镇痛,深呼吸时疼痛,安静时无疼痛,按Prince—Henry评分法可评
患者,男性,60岁。心窝部饥饿性疼痛10余年,近年来发作频繁,疼痛规律消失,经胃镜证实为十二指肠球后溃疡。该患者最合理的治疗方法是
患者,女性,47岁,化脓性胆管炎,剖腹术后病情危重,下列哪项处理不正确
A.三维成像B.自旋回波序列C.梯度回波序列D.回波平面序列E.快速反转恢复序列使用梯度翻转获得回波信号的序列是
窝洞制备的原则如下,除外
B企业为金属加工企业,主要从事铝合金轮毂加工制造。B企业的铝合金轮毂打磨车间为二层建筑,建筑面积2000m2,南北两端各设置载重2.5t的货梯和敞开式楼梯,一层有通向室外的钢制推拉门2个,该车间共设有32条生产线,一、二层各16条,每条生产线设有
关于无差异曲线,下列叙述正确的有( )。
在审计B公司2009年度财务报表的投资业务时,注册会计师乙需要设计针对性的审计程序。请针对下列具体问题,提供相应的专业帮助。B公司的销售和收款循环全部采用复杂的计算机系统进行会计核算,在以下各项列示的审计策略中,注册会计师不应当采取的是()。
绩效考评数据分析方法中,()只根据考评标准进行分析,不与别人的考评结果进行对比。
A、Itisnotatalldangerousifoneiscareful.B、Itwon’tcostmuchtobuyabike.C、Itdoesthemalotofgood.D、Itisintere
最新回复
(
0
)