首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
admin
2021-02-25
55
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
选项
答案
证法1:用定义证明.将矩阵B按列分块,得B=(β
1
,β
2
,…,β
n
),若有一组数k
1
,k
2
,…,k
n
,使得 k
1
β
1
+k
2
β
2
+…+k
n
β
n
=0, 则 [*] 由于AB=E,在等式两端左乘矩阵A得 [*] 即k
1
=0,k
2
=0,…,k
n
=0,从而向量组β
1
,β
2
,…,β
n
线性无关. 证法2:由于B是m×n矩阵,所以r(B)≤n,另一方面, r(B)≥r(AB)=r(E)=n, 所以r(B)=n,故B的列向量组β
1
,β
2
,…,β
n
线性无关.
解析
本题考查向量组线性无关的概念和抽象的向量组线性相关性的证明方法.可以用向量组线性相关性的定义证明,也可以用矩阵的秩进行证明.
转载请注明原文地址:https://kaotiyun.com/show/Fi84777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
A.心包摩擦音B.Kussmaul征C.Osler结节D.Beck三联征E.Ewart征渗出性心包炎
背景A公司具有机电工程建设总承包资质,经营范围包括可代理业主进行全部项目建设管理工作,直至竣工验收投入正式生产或使用。某建设单位拟扩建一民营化学试剂厂,计划购入国内尚未采用的新工艺扩建规模较大的厂房和装置,以提高产能和产品质量,由于引进的仅是工艺
下列选项中,关于市场价值和公允价值表述正确的有()。
以下期货合约中,交割月份相同的是()。
该服装厂在劳动力市场中,属于()企业。在服装生产淡季,一部分工人被辞退,这种失业属于()。
根据下面一段对话内容,从对话右边方框内的选项中选出能填入空白处的最佳选项,其中两项为多余选项。A:Oh,hi,Tess!I’msorry.I’mthinkingaboutsomething.B:【1】_______A:Iam.I’have
谈谈如何自我激励学习动机。
亚马孙的河流与丛林、安第斯的山脉、巴塔哥尼亚高原、潘帕斯草原,哪怕仅仅是________这些神秘野性的地理名词,也能莫名其妙地在心中唤起某种情感,好像即将开始一趟心灵的象征之旅,旅途中“对________的人生做出一番沉思”。填入画横线部分最恰当的一项是:
2005年岳阳市在岗职工年平均工资为( )。今年职工年平均工资最低的城市的2005年的在岗职工年平均工资为( )。
Understandingtheculturalhabitsofanothernation,especially______containingasmanydifferentsubculturesastheUnitedStat
最新回复
(
0
)