首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且=一1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且=一1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
admin
2016-10-24
25
问题
设f(x)二阶可导,f(0)=f(1)=0且
=一1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
选项
答案
在使用泰勒中值定理时,若已知条件中给出某点的一阶导数,则函数在该点展开;若结论中是关于某点的一阶导数,则在该点展开;若既未给出某点的一阶导数的条件,结论中又不涉及某点的一阶导数,往往函数在区间的中点处展开. 因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0, [*]f(x)=一1,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在f∈(0,1),使得f(c)=一1,再由费马定理知f’(c)=0, 根据泰勒公式 [*] 所以存在ξ∈(0,1),使得f"(ξ)≥8.
解析
转载请注明原文地址:https://kaotiyun.com/show/pIH4777K
0
考研数学三
相关试题推荐
通过交换积分次序证明:
证明:函数f(x)=1/xsin1/x在区间(0,1]内无界,但当x→0+时这个函数不是无穷大.
设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
曲线y=1/x+ln(1+ex)渐近线的条数为________.
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
设X1,X2,X3,X4,X5,X6是来自总体X~,N(0,22)的简单随机样本,且Q=a[(X1+X2+X3)2+(X4+X5+X6)2]一γ2(2),则a=_____.
随机试题
属于常见污染食品的霉菌的是
吸烟与肺癌关系的许多研究都是前瞻性队列研究,最初调查过吸烟情况的研究对象中有一部分后来失访了,关于这些失访者下列说法正确的是
小儿痰热咳嗽,阴虚燥咳,体虚久咳者忌用的药物是()
寒冷地区需防冻或需防误喷的古建筑宜采用()灭火系统。
可以用协方差来度量各种金融资产的收益率之间的相互关联程度。()
JoeSimpsonandSimonYateswerethefirstpeopletoclimbtheWestFaceoftheSiulaGrandeintheAndesmountains.Theyreache
简述不正当竞争行为的类型。
党的十六届五中全会提出的建设社会主义新农村的总要求是()。
理性经济人假设是西方经济学理论的逻辑基础,这一理论假设的核心是认为人()。
下列关于我国物权法上规定的物权变动,正确的是()
最新回复
(
0
)