首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,f(0)=f(1)=0,.试证 (1)存在,使f(η)=η. (2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)=λ[f(ξ)一ξ]=1
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,f(0)=f(1)=0,.试证 (1)存在,使f(η)=η. (2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)=λ[f(ξ)一ξ]=1
admin
2018-07-24
37
问题
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,f(0)=f(1)=0,
.试证
(1)存在
,使f(η)=η.
(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)=λ[f(ξ)一ξ]=1
选项
答案
(1)令φ(x)=f(x)一x,则φ(x)在[0,1]上连续.又φ(1)=一1<0, [*] 由介值定理可知,存在 [*] 使得φ(η)=f(η)一η=0 即 f(η)=η (2)要证f’(ξ)一λ[f(ξ)一ξ]=1,即要证 [f’(ξ)一1]一λ[f(ξ)一ξ]=0 也就是要证 φ’(ξ)一λφ(ξ)=0,因此构造辅助函数 F(x)=e
-λx
φ(x)=e
-λx
[f(x)一x] 则F(x)在[0,η]上满足罗尔定理的条件,故存在ξ∈(0,η).使得F’(ξ)=0. 即 e
-λξ
[φ’(ξ)一λφ(ξ)]=0 而 e
-λξ
≠0,从而有 φ’(ξ)一λφ(ξ)=0 即 f’(ξ)一λ[f(ξ)一ξ]=1
解析
转载请注明原文地址:https://kaotiyun.com/show/pQW4777K
0
考研数学三
相关试题推荐
设f(x)是不恒为零的奇函数,且f’(0)存在,则g(x)=().
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
求幂级数的和函数.
(00年)设有n元实二次型f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ3)2+…+(χn-1+an-1χn)+(χn+anχ1)2,其中a1(i=1,2,…,n)为实数.试问:当a1,a2…,an满足何种条件时,二次
(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】
设f(x)是可导的函数,对于任意的实数s、t,有f(s+t)=f(s)+f(t)+2st,且f’(0)=1.求函数f(x)的表达式.
设二阶常系数齐次线性微分方程yˊˊ+byˊ+y=0的每一个解y(x)都在区间(0,+∞)上有界,则实数b的取值范围是()
随机试题
把下列汉字按声母的发音部位进行归类:色、曾、包、六、是、学、封、黄、接、等、木、风、哭、装
Dreiser’s"TrilogyofDesire"includesthreenovels.TheyareTheFinancier,TheTitanand______.
A.控制系统B.受控系统C.反馈信息D.控制信息动脉壁上的压力感受器感受动脉血压变化,使相应的传入神经产生的动作电位可看作是
破伤风杆菌具有很强的抵抗力,其主要原因是()
肺心病死亡的首要原因是
将大蒜素制成微囊是为了()。
模拟手工记账在我国会计信息化发展过程中处于的阶段是()。
关于提供劳务收入的确认计量,下列说法中,正确的有()。
申办边境旅游业务,如涉及同我国开展边境旅游的国家或地区,由国家旅游局、外交部、公安部、海关总署部门批准。()
Ifadultslikedtoreadbooksthatwereexceedinglydifficult,they’dallbereadingProust.Mostdon’t.Sowhy,readingex
最新回复
(
0
)