首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (I)求f’(x); (Ⅱ)证明:x=0是f(x)的极大值点; (Ⅲ)令考察f’(xn)是正的还是负的,n为非零整数; (Ⅳ)证明:对,f(x)在(一δ,0]上不单调上升,在[0,8]上不单调下降.
设 (I)求f’(x); (Ⅱ)证明:x=0是f(x)的极大值点; (Ⅲ)令考察f’(xn)是正的还是负的,n为非零整数; (Ⅳ)证明:对,f(x)在(一δ,0]上不单调上升,在[0,8]上不单调下降.
admin
2017-05-10
117
问题
设
(I)求f’(x);
(Ⅱ)证明:x=0是f(x)的极大值点;
(Ⅲ)令
考察f’(x
n
)是正的还是负的,n为非零整数;
(Ⅳ)证明:对
,f(x)在(一δ,0]上不单调上升,在[0,8]上不单调下降.
选项
答案
(I)当x≠0时按求导法则得 [*] 当x=0时按导数定义得 [*] (Ⅱ)由于[*],即f(x)<f(0),于是由极值的定义可知x=0是f(x)的极大值点. (Ⅲ)令[*],于是 [*] (Ⅳ)对[*],当n为[*]负奇数且|n|充分大时x
n
∈(一δ,0),f’(x
0
)<0→f(x)在(一δ,0) 不单调上升;当n为正偶数且n充分大时x
n
∈(0,δ),f’(x
n
)>0→f(x)在(0,δ)不单调下降.
解析
转载请注明原文地址:https://kaotiyun.com/show/pXH4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
下列函数在指定区间上是否存在最大值和最小值?如有,求出它的值,并说明是最大值还是最小值:
利用定积分计算下列极限:
设幂级数的收敛半径为多少?其中是,k,m都是取定的正整数.
设随机变量x1~N(0,1),X2一B(),X3服从于参数为λ=1的指数分布,设则矩阵A一定是().
若级数条件收敛,设则().
假设X1,X2,…,Xn为来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4),证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.
设二维随机变量(X,Y)的概率密度为f(x,y)=,求:(Ⅰ)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X-Y,的概率密度fZ(z);(Ⅲ)
设X1,X2,…,Xn是来自总体X的样本,X的分布密度为f(x,θ)=试用矩估计法估计总体参数θ.
若一条二次曲线把(一∞,0)内的曲线段y=en和(1,+∞)内的曲线段连结成一条一阶可导的曲线,则定义在[0,1]上的这条二次曲线为_____________.
随机试题
学生确信自己有能力完成一项学习任务时,就会产生高度的自我效能感。()
二期梅毒的主要表现是
慢性肾衰发病机制的三高学说是指
药物透皮吸收是指
高某,男,38岁,曾因盗窃罪被判处有期徒刑4年,刑满释放后,仍不思悔改,其父多次劝导,反而招致高某不满,心生怨恨。某日,因其父劝解,引发高某怒火冲天,打伤其父。经依法侦查,检察机关提起公诉,法院受理此案并开庭审理。回答以下问题。
风险转移是工程项目风险管理中非常重要而且广泛应用的一项对策,主要分为两种形式:()与财务型风险转移。
对出口卷烟的增值税退(免)税政策是( )。
学生获取系统知识的重要工具以及教师进行教学的主要依据是()。
算法的时间复杂度是指()。
TradeExplorerMagazine1030NewburyStreet,Philadelphia,PAMarch12LanceHughesMarketingManagerE-bookStationDearMr.
最新回复
(
0
)