首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
admin
2019-01-05
77
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明: f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b] . 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/pZW4777K
0
考研数学三
相关试题推荐
设f(x)二阶连续可导,g(x)连续,且,则().
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设数列{xn}由递推公式确定,其中a>0为常数,x0是任意正数,试证存在,并求此极限.
求函数的单调区间,极值点及其图形的凹凸区间与拐点.
接连不断地、独立地对同一目标射击,直到命中为止,假定共进行n(n≥1)轮这样的射击,各轮射击次数相应为k1,k2,…,kn,试求命中率p的最大似然估计值和矩估计值.
设X1,X2,…,Xn是取自总体x的一个简单随机样本,DX=σ2,是样本均值,则下列估计量的期望为σ2的是
过原点作曲线y=lnx的切线,设切点为x0,且由曲线y=lnx,直线y=0,x=x0所围平面图形的面积与由曲线y=x3,直线y=0,x=a所围平面图形的面积相等,求a的值.
计算二重积分其中D是由曲线y=ex与直线y=x+1在第一象限围成的无界区域.
(97年)设u=f(χ,y,z)有连续偏导数,y=y(χ)和z=z(χ)分别由方程eχy-y=0和eχ-χz=0所确定,求.
设则A-1=_______.
随机试题
三角形连接三相对称负载电路中,相电流与线电流之间的关系是()。
迁徙扩散生长的细菌最有可能是
在评价诊断方法的诊断结果时,实际为患者,但根据某法诊断为非患者的百分:率为
某县为加强社会治安综合治理抽调人员成立治安巡逻大队,队员赵某在巡逻中发现甲、乙、丙、丁正在聚众赌博使与之争吵。争吵之中,赵某将甲戴上手铐带回县治安巡逻大队。事后,县公安局以赵某擅自使用械具、非法限制他人的人身自由为由对赵某行政拘留15天。此案赵某行为的性质
有压进水口的特征是进水口高程在水库()以下。
劳动争议由劳动合同履行地或者用人单位所在地的劳动争议仲裁委员会管辖。()
因合同纠纷提起的诉讼,由()人民法院管辖。
何老师发现班里的幼儿萌萌感冒了,于是在课间休息期间,喂萌萌服下了儿童感冒药。何老师的做法()。
计算机系统软件不包括下列选项中的()。
简述我国基层群众性自治组织的概念和特点。(2010年真题)
最新回复
(
0
)