首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若A是n阶正定矩阵,证明A-1,A*也是正定矩阵.
若A是n阶正定矩阵,证明A-1,A*也是正定矩阵.
admin
2017-06-08
81
问题
若A是n阶正定矩阵,证明A
-1
,A
*
也是正定矩阵.
选项
答案
因A正定,所以A
T
=A.那么(A
-1
)
T
=(A
T
)
-1
=A
-1
,即A
-1
是实对称矩阵. 设A的特征值是λ
1
,λ
2
,…,λ
n
,那么A
-1
的特征值是[*],由A正定知λ
i
>0(i=1,2,…,n).因此A
-1
的特征值[*]>0(i=1,2,…,n).从而A
-1
正定. A
*
=|A|A
-1
,|A|>0,则A
*
也是实对称矩阵,并且特征值为 [*] 都大于0.从而A
*
正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/pct4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]
A、 B、 C、 D、 C
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
计算下列函数的偏导数:
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设A为三阶方阵,A1,A2,A3表示A中三个列向量,则|A|=().
随机试题
女,28岁。停经38天,阴道出血8天,伴下腹隐痛,检查:宫颈无提痛。宫体略大,质中,附件无明显肿块及压痛,HCG(+),要求人流。人流吸出物见到下列哪一项可排除宫外孕
胆总管结石合并急性梗阻性化脓性胆管炎时发生的并发症中,下列哪项是错误的
某开发区土地总面积为6km2,已完成“五通一平”。现拟出让该开发区一宗工业用地50年期的土地使用权,土地面积为1000m2。据调查,该开发区可供出让的土地面积约为4.5km2,平均征地费及相关税费为10万元/亩,完成1km。的土地开发需投入2亿元
如图3-287所示的粱的剪力图哪个正确?[2004年第36题]
关于河道水流形态的基本分类,下列说法错误的是()。
在对企业价值进行评估时,下列说法中不正确的是()。(2005年考题改编)
()是发源于欧洲中世纪的爱情歌曲,通常在黄昏或夜晚演唱,流行于西班牙、意大利等国。
古人种植的时候需要雨水,行船的时候需要有风,水和风能够按照季节准时而至,古人便把这种自然现象和秩序叫做“信”。有了“信”,人们才能进行生产劳动,才能正常生活。所以,他们总是诚心诚意地祈求上天或神仙来保佑,以便得到准确、实在的“信”。后来,人们认识到人类自身
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
A、一位嫁到美国的欧洲姑娘B、一种原产于欧洲的饲料草C、一种来自法国的叶甲壳虫D、一种可做药用的观赏植物D
最新回复
(
0
)