设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).

admin2018-06-27  70

问题 设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).

选项

答案取{α1,α2,…,αs,β1,β2,…,βt}的一个最大无关组(Ⅰ),记(Ⅰ)1是(Ⅰ)中属于α1,α2,…,αs中的那些向量所构成的部分组,(Ⅰ)2是(Ⅰ)中其余向量所构成的部分组.于是(Ⅰ)1和(Ⅰ)2分别是属于α1,α2,…,αs和β1,β2,…,βt的无关部分组,因此它们包含向量个数分别不超过r(α1,α2,…,αs)和r(β1,β2,…,βt)。从而 r(α1,α2,…,αs,β1,β2,…,βt)=(Ⅰ)中向量个数=(Ⅰ)1中向量个数+(Ⅰ)2中向量个数≤r(α1,α2,…,αs)+r(β1,β2,…,βt).

解析
转载请注明原文地址:https://kaotiyun.com/show/pek4777K
0

相关试题推荐
最新回复(0)