首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).
设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).
admin
2018-06-27
95
问题
设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
都是n维向量组,证明r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
选项
答案
取{α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
}的一个最大无关组(Ⅰ),记(Ⅰ)
1
是(Ⅰ)中属于α
1
,α
2
,…,α
s
中的那些向量所构成的部分组,(Ⅰ)
2
是(Ⅰ)中其余向量所构成的部分组.于是(Ⅰ)
1
和(Ⅰ)
2
分别是属于α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
的无关部分组,因此它们包含向量个数分别不超过r(α
1
,α
2
,…,α
s
)和r(β
1
,β
2
,…,β
t
)。从而 r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=(Ⅰ)中向量个数=(Ⅰ)
1
中向量个数+(Ⅰ)
2
中向量个数≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
解析
转载请注明原文地址:https://kaotiyun.com/show/pek4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
设有三个线性无关的特征向量,求x和y应满足的条件.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,0为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
求微分方程y"-2y’=e2x满足条件y(0)=1,y’(0)=1的解.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
设f(x)连续(A为常数),φ(x)=∫01f(xt)dt,求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
货币主权制度不包含下列哪项内容()
下列选项中,属于暖肝煎组成药物的是()(2005年第54题)
胆汁内的主要成分是
左侧侧方咀嚼运动,研磨食物开始阶段的生物杠杆是
肘关节脱位的特有体征是
《工程建设标准强制性条文》是()的配套文件。
计算机病毒的检测方法通常有()。
()是“以人为本”的实现准则。
跟中世纪等其他较早的时期相比起来,15世纪的人们较多地读书和旅行。其结果是,知识见闻和交谈讨论都增加了,对许多不同话题的质疑也多了起来。由于旅行而带动的互通有无,更有助于修正许多人的意见。尽管顽固、迫害和极端主义仍未停止,但是人们越来越相信从辩论中所达成的
WATERANDLIFEONMARS1Thepresenceorabsenceofwaterhasadirectbearingonthepossibilityoflifeonotherplanets.In
最新回复
(
0
)