首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差.若+kS2为np2的无偏估计量,则k=_______.
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差.若+kS2为np2的无偏估计量,则k=_______.
admin
2018-07-30
66
问题
设X
1
,X
2
,…,X
m
为来自二项分布总体B(n,p)的简单随机样本,
和S
2
分别为样本均值和样本方差.若
+kS
2
为np
2
的无偏估计量,则k=_______.
选项
答案
-1
解析
设总体为X,则知X~B(n,p),EX=np,DX=np(1-p).
∴E
=np,ES
2
=np(1-p)
由题意得np
2
=E(
+kS
2
)=E
+kES
2
=np+knp(1-p)
故得k=-1.
转载请注明原文地址:https://kaotiyun.com/show/pfg4777K
0
考研数学一
相关试题推荐
设N阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+α2+…+(n—1)αn—1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概事密度函数.
设(X,Y)的联合分布函数为F(x,y)=,则P{max(X,Y)>1}=___________.
某种食品防腐剂含量X服从N(μ,σ2)分布,从总体中任取20件产品,测得其防腐剂平均含量为=10.2,标准差为s=0.5099,问可否认为该厂生产的产品防腐剂含量显著大于10(其中显著性水平为α=0.05)?
设随机变量X,Y相互独立且都服从N(μ,σ2)分布,令Z=max(X,Y),求E(Z).
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
随机试题
[*]
在胃肠功能监测中被认为是胃排空定量分析金标准的是
哪些污染物可引起慢性阻塞性肺病
在( )市场中,证券当前价格完全反应所有公开信息,不仅包括证券价格序列信息,还包括有关公司价值、宏观经济形势和政策方面的信息。
日本蓼科杂草在19世纪中期被引入英国,由于在当地罕有天敌,这种植物在英国迅速繁殖,严重威胁了本地生物。英国研究人员专门培育出一种昆虫,它不但专门吸食蓼科杂草的汁液,而且可在其枝叶上大量繁殖后代,因此可以采用这种生物手段来削弱蓼科杂草的生长繁殖能力,遏制杂草
读书的意义俞平伯古人云,“读万卷书,行万里路”,这其实是对一桩事情的两种看法。游历者,活动的书本。读书则曰卧游,山川如指掌,古今如对面,乃广义的游览。现在,因交通工具的方便,
教生物的崔老师询问了几个学生努力学习生物的原因,得知小丽是因为喜欢研究小动物、小植物而喜欢生物课;小亮是因为学好生物课,同学们都会崇拜他、听他指挥;小雅是因为学好了生物,崔老师就会表扬她。小丽、小亮、小雅的学习动机分别是()。
下列关于学习策略的说法,正确的是()。
你肯定听过这种理论:左撇子的右脑运作比较活跃,因此更为感性,具有艺术天赋;右撇子则充分锻炼了左脑,因而擅长逻辑思维,性格更为理性。这个观念是如此深入人心,以至于有些父母或教育者煞费苦心地让孩子平衡左右手活动。接下来作者最有可能谈论的是()。
Awhitekidsellsabagofcocaineathissuburbanhighschool.ALatinokiddoesthesameinhisinner-cityneighborhood.Both
最新回复
(
0
)