首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
过点P(1,0)作曲线的切线,求: (Ⅰ)该切线与曲线及x轴围成的平面图形的面积; (Ⅱ)该平面图形绕x轴旋转一周所成旋转体体积; (Ⅲ)该平面图形绕直线y=-1旋转一周所成旋转体体积.
过点P(1,0)作曲线的切线,求: (Ⅰ)该切线与曲线及x轴围成的平面图形的面积; (Ⅱ)该平面图形绕x轴旋转一周所成旋转体体积; (Ⅲ)该平面图形绕直线y=-1旋转一周所成旋转体体积.
admin
2017-10-25
48
问题
过点P(1,0)作曲线
的切线,求:
(Ⅰ)该切线与曲线及x轴围成的平面图形的面积;
(Ⅱ)该平面图形绕x轴旋转一周所成旋转体体积;
(Ⅲ)该平面图形绕直线y=-1旋转一周所成旋转体体积.
选项
答案
(Ⅰ)设切点坐标为(x
0
,y
0
),y
0
=[*],则切线方程为 [*] 由题意要求其过点(1,0),解得x
0
=3,y
0
=1,所求切线方程化简为 y=[*](x-1). 为求面积,若分割x轴上区间[1,3],则由于上、下曲线的情况不同,必须分成[1,2]、[2,3]分别计算, 可得 [*] 若分割y轴上区间[0,1],则右曲线为x=y
2
+2,左曲线为x=3+2(y-1),从而得 S=∫
0
1
{(y
2
+2)-[3+2(y-1)]}dy=[*] (Ⅱ)如图3-2所示,所求旋转体体积,即为由三角形ACD绕x轴旋转所成的圆锥体体积,减去抛物曲线[*]和线[*]围成的图形绕x轴旋转所成旋转体体积V
0
.在求全旋转体体积V
0
时,将区间[2,3]划分成n等份,每个小分割近似看成矩形,则其旋转后近似为圆柱体,其体积为因此V
0
体积为 [*](x
i
-2)△x
i
=∫
3
3
π(x-2)dx. 因此,所求体积为 [*] (Ⅲ)如图3-3所示,所求体积可看成由三角形abc绕y=-1旋转所成的体积V
1
,加上曲边图形bcd绕y=-1旋转所成的体积V
2
.求旋转体的体积V
1
时,分割区间[1,2],每个小分割近似看成矩形,绕y=-1旋转所成旋转体近似为圆环柱体,其体积为 [*] 所求体积为V
1
+V
2
[*]
解析
本题图形如图3-1所示,切线、曲线、x轴围成一平面图形;还可看出必须先求出曲线上的切点坐标,然后用分割、近似、取和、求极限的步骤表达出该图形的面积.
转载请注明原文地址:https://kaotiyun.com/show/pkr4777K
0
考研数学一
相关试题推荐
求摆线的长度.
设随机变量X~N(0,1),且Y=9X2,则Y的密度函数为__________.
求微分方程y"+4y’+4y=eax的通解.
设函数z=f(u),方程确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1.求
函数则极限()
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
两条平行直线[*,之间的距离为()
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处韵切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
求极限
(97年)设f(x)连续,φ(x)=∫01f(xt)dt,且=A(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
随机试题
背景某机场工程机坪扩建项目施工进展到25周时,对前24周的工作进行了统计检查,检查结果列见下表。计算24周的CV与SV并分析成本和进度状况。
槐花散的功用是
A.肠中热结,腑气不通B.心火独亢,侵扰心神C.邪热炽盛,迫津外泄D.邪气亢盛,化燥化热E.寒邪凝束,正气抗邪
饰面板(砖)工程应对下列材料及其性能指标进行复验()。
下列已经颁布的规范性法律文件中,不属于宪法部门法范畴的是()。
一笔8年期的公司贷款,商业银行允许展期的最长期限是()年。[2016年6月真题]
教育发展受制于政治经济制度等因素,但也具有相对独立性,具体表现在()。
下列政府举措中,不能够直接促进城镇居民人均可支配收入增长的是:
党的十七大报告指出:全面推进党的建设新的伟大工程,要以提高领导干部的素质为重点加强组织建设。()
试论合同保全制度中的撤销权。
最新回复
(
0
)