首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
admin
2018-06-27
92
问题
设f(x),g(x)在x=x
0
某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x
0
)
2
)(x→x
0
).
选项
答案
相交与相切即f(x
0
)=g(x
0
),f’(x
0
)=g’(x
0
).若又有曲率相同,即 [*] 亦即|f’’(x
0
)|=|g’’(x
0
)|. 由二阶导数的连续性及相同的凹凸性得,或f’’(x
0
)=g’’(x
0
)=0或f’’(x
0
)与g’’(x
0
)同号,于是f’’(x
0
)=g’’(x
0
).因此,在所设条件下,曲线y=f(x),y=g(x)在(x
0
,y
0
)处相交、相切且有相同曲率 [*]f(x
0
)-g(x
0
)=0,f’(x
0
)-g’(x
0
)=0,f’’(x
0
)-g’’(x
0
)=0. [*]f(x)-g(x)=f(x
0
)-g(x
0
)+[f(x)-g(x)]’|
x=x
0
(x-x
0
)+[*][f(x)-g(x)]’’|
x=x
0
(x-x
0
)
2
+o(x-x
0
)
2
=o((x-x
0
)
2
) (x→x
0
). 即当x→x
0
时f(x)-g(x)是比(x-x
0
)
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/ppk4777K
0
考研数学二
相关试题推荐
函数,的间断点的个数为_______.
求
设求A的特征值,特征向量;
设函数f(x)在区问(0,+∞)上可导,且f’(x)>0求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y/(0)=3/2的解.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设当x→0时,sin(sin2x)ln(1+x2)是比xsinxn高阶无穷小,而xsinxn是比(ex2-1)高阶无穷小.则正整数n=().
(2004年)把χ→0+时的无穷小量α=∫0χcost2dt,β=,γ=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是【】
设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P点的引力公式F=.
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为______.
随机试题
电位滴定与容量滴定的根本区别在于()不同。
取某药物水溶液,加盐酸使成酸性,再加三氯化铁试液1滴,即显紫红色。放置3小时,不得发生沉淀。该药物应是
下列()人员应当向公司申报所持有的本公司的股份,并在任职期间内不得转让。
【2006年第4题】题16~19:某中学普通教室宽约10m,长约15m,高约3.5m,顶棚、墙面四白落地,水泥地面,前面讲台和后面班级板报均有黑板。请回答下列照明设计相关问题。请分析说明为使教室照度分布均匀,宜采用下列哪种规格的灯具?
下列不属于流浪乞讨人员救助领域的社会工作方法的是( )。
德育就是要用“爱”的浪花推动青少年前进的风帆,用“善”的乳汁润滑青少年生命前进的车轮,用“美”的春雨沐浴青少年飞翔的双翼,用“真”的阳光照耀青少年生命成长的大道。美好的使命自然使德育成为最有魅力的教育。我们要让青少年明白生命是美丽的,是神圣的,是伟大的,应
公文可以转变为值得信赖的历史档案,或者成为可资采信的()。
中国雅虎推出社交网站标志着该行业正迎来拐点。Facebook的出现让社区网络被人们所熟知。随着网易“梦幻人生”浮出水面,又有一家传统门户网站进入了社区网站领域。业内人士分析,门户网站拥有充足的资金,它们的加入将对传统社区网站造成不小冲击,并提升市场进入门槛
A、ThereisnoaccesstotheInternet.B、Thetrafficoutsideistoonoisy.C、Theairconditionerisoutoforder.D、Thereisnoh
Valentine’sDayissupposedtobeaboutloveandromance.Butunfortunately,itcanbejusttheopposite.Becauseofthat,Feb.
最新回复
(
0
)