首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
admin
2018-06-27
79
问题
设f(x),g(x)在x=x
0
某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x
0
)
2
)(x→x
0
).
选项
答案
相交与相切即f(x
0
)=g(x
0
),f’(x
0
)=g’(x
0
).若又有曲率相同,即 [*] 亦即|f’’(x
0
)|=|g’’(x
0
)|. 由二阶导数的连续性及相同的凹凸性得,或f’’(x
0
)=g’’(x
0
)=0或f’’(x
0
)与g’’(x
0
)同号,于是f’’(x
0
)=g’’(x
0
).因此,在所设条件下,曲线y=f(x),y=g(x)在(x
0
,y
0
)处相交、相切且有相同曲率 [*]f(x
0
)-g(x
0
)=0,f’(x
0
)-g’(x
0
)=0,f’’(x
0
)-g’’(x
0
)=0. [*]f(x)-g(x)=f(x
0
)-g(x
0
)+[f(x)-g(x)]’|
x=x
0
(x-x
0
)+[*][f(x)-g(x)]’’|
x=x
0
(x-x
0
)
2
+o(x-x
0
)
2
=o((x-x
0
)
2
) (x→x
0
). 即当x→x
0
时f(x)-g(x)是比(x-x
0
)
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/ppk4777K
0
考研数学二
相关试题推荐
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续.②f(x)在[a,b]上可积.③f(x)在[a,b]上可导.④f(x)在[a,b]上存在原函数.以P→Q表示由性质P可推出性质Q,则有()
设证明:f(x,y)在点(0,0)处不可微.
设函数f(x)满足f’(0)=0,f’’(0)0,使得
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
已知抛物线y=ax2+bx+c,在其上的点P(1,2)的曲率圆的方程为求常数a,b,c的值.
设函数f(x)在(0,+∞)内具有二阶导数,且f(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
设f(x)在[0,0](a>0)上非负且二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
计算极限.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
随机试题
精神分裂症急性期首选治疗应是【】
资本主义国家立法机关的主要职权有()。
A、Onewhoisinterestedingettinggoodgradesinexams.B、Onewhocanfinishtheassignmentontime.C、Onewhoismotivatedto
李先生,68岁,因上消化道大出血入院,当前护理诊断中属于首优问题的是()。
与散射线产生的量无关的是
心理咨询不能解决的问题是
患儿,女,7岁。面色无华,血常规检查血红蛋白87g/L,腹胀,善食易饥,恶心呕吐,嗜食生米、泥土、茶叶等,神疲肢软,气短头晕,舌质淡,苔白,脉虚弱。其中医治法是
人们对自己的行为,在同他人和社会的关系上负有道德责任的自觉意识和相应的自我评价能力,这种对本身行为是非、善恶的内心体验是()。
_______可以把两个或多个SELECT语句的查询结果组合成一个结果集,使用时要求所有SELECT语句的列数应相同,对应列的数据类型相容。
为了使模块尽可能独立,要求()。
最新回复
(
0
)