首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
admin
2018-06-27
59
问题
设f(x),g(x)在x=x
0
某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x
0
)
2
)(x→x
0
).
选项
答案
相交与相切即f(x
0
)=g(x
0
),f’(x
0
)=g’(x
0
).若又有曲率相同,即 [*] 亦即|f’’(x
0
)|=|g’’(x
0
)|. 由二阶导数的连续性及相同的凹凸性得,或f’’(x
0
)=g’’(x
0
)=0或f’’(x
0
)与g’’(x
0
)同号,于是f’’(x
0
)=g’’(x
0
).因此,在所设条件下,曲线y=f(x),y=g(x)在(x
0
,y
0
)处相交、相切且有相同曲率 [*]f(x
0
)-g(x
0
)=0,f’(x
0
)-g’(x
0
)=0,f’’(x
0
)-g’’(x
0
)=0. [*]f(x)-g(x)=f(x
0
)-g(x
0
)+[f(x)-g(x)]’|
x=x
0
(x-x
0
)+[*][f(x)-g(x)]’’|
x=x
0
(x-x
0
)
2
+o(x-x
0
)
2
=o((x-x
0
)
2
) (x→x
0
). 即当x→x
0
时f(x)-g(x)是比(x-x
0
)
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/ppk4777K
0
考研数学二
相关试题推荐
设3阶矩阵t为何值时,矩阵A,B等价?说明理由.
设f(x)在[0,1]上可导,且满足试证明:存在ξ∈(0,1),使
设二次型f(x1,x2,x3,x4)=x12+2x1x2-x22+4x2x3一x32—2ax3x4+(a一1)2x2的规范形式为y12+y22一y32,则参数a=_______.
设证明:f(x,y)在点(0,0)处的两个偏导数fx’(0,0)与fy’(0,0)都存在,函数f(x,y)在点(0,0)处也连续;
微分方程(x+y)dy+(y+1)dx=0满足y(1)=2的特解是_______.
设函数f(x)在闭区间[a,b]上连续,且在(a,6)内有f’(x)>0,证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形的而积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
已知α1=(1,3,5,一1)T,α2=(2,7,n,4)T,α3=(5,17,一1,7)T,若α1,α2,α3线性相关,求α的值;
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
用泰勒公式求下列极限:
设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P点的引力公式F=.
随机试题
在100~150℃测定粘度时,各次流动时间与其算术平均值的差数不应超过其算术平均值的±1%。()
男性,40岁,刨伤后脾破裂大出血,继而尿量减少如果检查结果为尿沉渣阴性,血尿素30mmol/L,血肌酐500μmol/L,血红蛋白50g/L,尿渗透压320mO5m/L,可能的诊断是
试问,计算吊车梁疲劳时,作用在跨间内的下列何种吊车荷载取值是正确的?
衡量中心地等级的指标称()。
用算法交易的终极目标是()。
中国证监会自受理股票发行申请文件到作出决定的期限为( )。
李老师在幼儿园内开了一个超市,幼儿张某喝了该超市所售卖的过期的矿泉水,腹泻不止。在此事件中应当承担责任的是()。
设χ=χ(t)由sint-∫tχ(t)φ(u)du=0确定,φ(0)=φ′(0)=1且φ(u)>0为可导函数,求χ〞(0).
如图所示是大型企业网核心层设计的两种方案,关于两种方案技术特点的描述中,错误的是()。
--Neverthoughttoseeyouhere.
最新回复
(
0
)