首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT.
admin
2018-08-03
46
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
证明二次型f对应的矩阵为2αα
T
+ββ
T
.
选项
答案
记x=[*],由于 f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=2[(x
1
,x
2
,x
3
)[*](a
1
,a
2
,a
3
)[*]]+[(x
1
,x
2
,x
3
)[*](b
1
,b
2
,b
3
)[*]] =2x
T
(αα
T
)x+x
T
(ββ
T
)x =x(2αα
T
+ββ
T
)x
T
, 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/pug4777K
0
考研数学一
相关试题推荐
设函数f(x,y)在D:x2+y2≤1有连续的偏导数,且在L:x2+y2=1上有f(x,y)≡0.证明:f(0,0)=,其中Dr:r2≤x2+y2≤1.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)一f(x)=0在(0,1)内有根.
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
证明:
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
判断3元二次型f=+4x1x2-4x2x3的正定性.
求正交变换化二次型一2x1x2+2x1x3—2x2x3为标准形,并写出所用正交变换.
随机试题
在油田开发中的(),由于水淹面积小,含油饱和度高,水的相对渗透率低,含水上升速度缓慢。
佝偻病性手足搐搦症惊厥或喉痉挛发作时哪项处理是最恰当的
一小儿有哮喘病,症见面色白,气短懒言,语声低微,倦怠乏力,自汗怕冷,舌质淡苔薄白,脉细无力。证属哮喘缓解期何证
肝硬化腹水呈血性时首先考虑并发
甲因涉嫌故意伤害罪被人民检察院依法提起诉讼,被害人乙提起了附带民事诉讼,但法院经审理认定甲的行为不构成犯罪。下列选项中哪项是正确的?()
下列关于商品房预售条件,说法错误的是()。
我国《票据法》规定的票据包括()。
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T.(Ⅰ)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
Picture-takingisatechniquebothforreflectingtheobjectiveworldandforexpressingthesingularself.Photographsdepicto
Catshidetheirpaws.WhatisthepossibleChinesemeaningofthesentence?
最新回复
(
0
)