首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( )
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( )
admin
2019-05-12
46
问题
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组AX=β的3个线性无关的解,k
1
,k
2
为任意常数,则AX=β的通解为( )
选项
A、(η
2
+η
3
)/2+k
1
(η
2
-η
1
).
B、(η
2
-η
3
)/2+k
2
(η
2
-η
1
).
C、(η
2
+η
3
)/2+k
1
(η
3
-η
1
)+k
2
(η
2
-η
1
).
D、(η
2
-η
3
)/2+k
1
(η
3
-η
1
)+k
2
(η
2
-η
1
).
答案
C
解析
选项B和D都用(η
2
-η
3
)/2为特解,但是(η
2
-η
3
)/2不是原方程组解,因此选项B和D都排除.
选项A和C的区别在于导出组AX=0的基础解系上,选项A只用一个向量,而选项C用了两个:(η
3
-η
1
),(η
2
-η
1
).由于η
1
,η
2
,η
3
线性无关,可推出(η
3
-η
1
),(η
2
-η
1
)线性无关,并且它们都是AX=0的解.则AX=0的解集合的秩不小于2,从而排除A.
转载请注明原文地址:https://kaotiyun.com/show/pw04777K
0
考研数学一
相关试题推荐
设f(x)在x=0处可导,f(0)=0,求极限f(x2+y2+z2)dν,其中Ω:.
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题中正确的命题个数为().(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|
求y’’一2y’一e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
设三维向量空间R3中的向量ξ在基α1=(1,-2,1)T,α2=(0,1,1)T,α3=(3,2,1)T下的坐标为(x1,x2,x3)T,在基β1,β2,β3下的坐标为(y1,y2,y3)T,且y1=x1一x2一x3,y2=一x1+x2,y3=x1+2x3
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
设f(x)在x=a处二阶可导,证明:=f’’(a).
两个平行平面∏1:2x—y一3z+2=0与∏2:2x—y一3z一5=0之间的距离是_________。
设Z~N(0,1),令X=μ+σZ,X1,X2,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=依概率收敛于
随机试题
患者,女,31岁。右侧牙痛3天,龈肿,痛剧,伴口臭,口渴,大便3日未行,舌苔黄,脉洪。治疗除取颊车、下关穴外,还应加( )。
甲公司与乙公司签订委托合同,约定甲公司将一批浓硫酸委托乙公司保管于仓库。不料乙公司所在地刮起台风,大水将甲公司的浓硫酸冲走,浓硫酸泄漏,将丙家鱼塘中的鱼毒死,丙将死鱼打捞上来,出卖给丁。丁吃了毒死的鱼,导致中毒,其家人急忙送丁去医院,因为出租车司机A拒载,
系统安全理论中阐述导致事故原因的一种理论,它认为事故是由于______产生的。
理财规划师书写的综合理财建议书的特点不包括()。[2009年11月真题]
人们在有他人旁观的情况下,工作表现要比自己单独进行时更好,这种现象称为()。
新成立的单位应当自成立之日起()内办理住房公积金缴存登记。[2012年5月、2008年11月三级真题]
下面是某教师讲授“百家争鸣”一课时的板书,该板书的类型属于()。
北京市委,市政府决定,由市政府纠风办组织协调,组成治理“三乱”领导小组,对“三乱”采取明察暗访,协调裁决的做法,先后撤消了不符合国家规定的各种检查站36处,合并了业务相似,重复收费的收费站21个,拆除或责令停止整顿的汽车清洗站6个,使北京地区公路上基本无“
Howlongistheseminarseries?
Inanaveragewinter,highwaydepartmentsspreadsometenmilliontonsofsalttokeeproadssafe.Thecorrosiveeffectsarewel
最新回复
(
0
)