首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
admin
2019-03-21
52
问题
就a的不同取值情况,确定方程lnx=x
a
(a>0)实根的个数.
选项
答案
令f(x)=lnx-x
a
,即讨论f(x)在(0,+∞)有几个零点.用单调性分析方法.求f(x)的单调区间. [*] 则当0<x≤x
0
时,f(x)单调上升;当x≥x
0
时,f(x)单调下降;当x=x
0
时,f(x)取最大值f(x
0
)=[*].从而f(x)在(0,+∞)有几个零点,取决于y=f(x)属于图4.14中的哪种情形. [*] (Ⅰ)当f(x
0
)=[*]时,恒有f(x)<0 ([*]x∈(0,+∞)),故f(x)=0没有根. (Ⅱ)当f(x
0
)=[*]时,由于x∈(0,+∞),当x≠x
0
=e
e
时,f(x)<0,故f(x)=0只有一个根,即x=x
0
=e
e
. (Ⅲ)当f(x
0
)=[*]时,因为 [*] 故方程f(x)=0在(0,x
0
),(x
0
,+∞)各只有一个跟.因此f(x)=0在(0,+∞)恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/q1V4777K
0
考研数学二
相关试题推荐
求函数f(x)=的单调区间与极值.
函数y=ln(1一2x)在x=0处的n阶导数y(n)(0)=________.
设函数y=y(x)由方程2y3—2y2+2xy一x2=1所确定,试求y=y(x)的驻点,并判别它是否为极值点.
设A,B,C均为力阶矩阵.若AB=C,且B可逆,则
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量尼不能由α1,α2,α3线性表示,则对于任意常数k,必有
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为(1,2.1)T,求a,Q.
计算下列反常积分:
计算二重积分I=,其中D由y=x与y=x4围成.
设常数a≤α<β≤b,曲线Г:y=(x∈[α,β])的弧长为1.(Ⅰ)求证:l=;(Ⅱ)求定积分J=
随机试题
随着新税收改革法令的通过,低收入纳税人每年将平均减少100元到300元的财税负担。所以,税收改革有益于低收入纳税人。以下哪项如果为真,最严重地动摇了上述结论?
下列划横线的句子翻译错误的是【】
某实验室收到一个血标本,经离心后上层血清呈云雾状浑浊,其原因是
对病毒性肝炎的临床分型最有意义的依据是
炎性充血主要是指
作为债券结算的主要结算方式,全额结算的劣势是()。
下列关于合同成立条件的错误表述是()。
一个男人想结婚,但又怕结婚后要承担相应的责任义务。这时他面临的心理冲突是()。
阅读下文。回答106—110题。德国地理学家李希霍芬,首次提出“丝绸之路”这个概念,因为他通过考察,认为当时路上运输的主要货物是丝绸。尽管西域考古挖掘出一些丝织品,但这只说明“丝绸之路”确实运送过丝绸,而不能说明运送的主要物品是丝绸。今天“
《共产党宣言》发表以来160年的实践,特别是中国共产党人创造性地领导中国革命、建设和改革的成功实践告诉我们,马克思主义之所以能够成功的条件是
最新回复
(
0
)