首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组同解,求a,b,c的值。
已知齐次线性方程组同解,求a,b,c的值。
admin
2017-01-21
98
问题
已知齐次线性方程组
同解,求a,b,c的值。
选项
答案
因为方程组(2)中“方程个数<未知数个数”,所以方程组(2)必有非零解。于是方程组 (1)必有非零解,则(1)的系数行列式为0,即 [*] 对方程组(1)的系数矩阵作初等行变换,有 [*] 则方程组(1)的通解是k(—1,—1,1)
T
。 因为(—1,—1,1)
T
是方程组(2)的解,所以 [*]=1,c=2或 b=0,c=1。 当b=1,c=2时,方程组(2)为[*] 其通解是k(—1,—1,1)
T
,所以方程组(1)与(2)同解。 当b=0,c=1时,方程组(2)为[*] 由于方程组(2)的系数矩阵的秩为1,而方程组(1)的系数矩阵的秩为2,故方程组(1)与(2)不同解,则b=0,c=1应舍去。综上,当a=2,b=1,c=2时,方程组(1)与(2)同解。
解析
转载请注明原文地址:https://kaotiyun.com/show/q9H4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设n阶矩阵A与B等价,则必有().
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
已知且AX+X+B+BA=0,求X2006。
随机试题
A、Postingacommentonthehotel’swebpage.B、Stayinginthesamehotelnexttimehecomes.C、SigningupformembershipofShera
能够反映企业资金利用效率的是()
如果机体在一段时间内避免作外功,且体重不变,其消耗的能量最终都变成
对于腰椎间盘突出症,下列哪项是不正确的
关于肾性糖尿原因的叙述,正确的是
数控磨床(用于齿轮的磨削加工)
从聚合资源优势,贯彻实施企业发展战略和经营目标的角度,集权与分权相结合型财务管理体制显然是最具保障力的。()
“仲”“季”“叔”“伯”是我国古代对兄弟排行的次序,其中排行第四位的是()。
近来,针对韩国三星、LG等6家境外大型面板生产商的价格垄断,国家发改委开出3.53亿元的首张罚单,这也是我国迄今为止金额最高的价格违法罚单。然而,部分网友认为处罚的金额相对较低,仅为欧美针对液晶企业的反垄断罚单的1/20左右,吐槽罚金过低“不给力”。以下哪
学生很容易在作业本上看到教师用红笔写下的评语。这体现的知觉特性是()
最新回复
(
0
)