首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组同解,求a,b,c的值。
已知齐次线性方程组同解,求a,b,c的值。
admin
2017-01-21
92
问题
已知齐次线性方程组
同解,求a,b,c的值。
选项
答案
因为方程组(2)中“方程个数<未知数个数”,所以方程组(2)必有非零解。于是方程组 (1)必有非零解,则(1)的系数行列式为0,即 [*] 对方程组(1)的系数矩阵作初等行变换,有 [*] 则方程组(1)的通解是k(—1,—1,1)
T
。 因为(—1,—1,1)
T
是方程组(2)的解,所以 [*]=1,c=2或 b=0,c=1。 当b=1,c=2时,方程组(2)为[*] 其通解是k(—1,—1,1)
T
,所以方程组(1)与(2)同解。 当b=0,c=1时,方程组(2)为[*] 由于方程组(2)的系数矩阵的秩为1,而方程组(1)的系数矩阵的秩为2,故方程组(1)与(2)不同解,则b=0,c=1应舍去。综上,当a=2,b=1,c=2时,方程组(1)与(2)同解。
解析
转载请注明原文地址:https://kaotiyun.com/show/q9H4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
随机试题
审美惊异
当组数等于2时,对于同一资料,方差分析结果与t检验结果的关系是
根据支付结算法律制度的规定,下列存款人中,可以申请开立基本存款账户的有()。
关于导游资格证书的表述不正确的是()。
“一国两制”即在一个中国的前提下,国家的主体坚持社会主义制度;香港、澳门、台湾是中国不可分割的组成部分,它们作为特别行政区保持原有的资本主义制度和生活方式长期不变。“一国两制”构想是由()提出的。
研究发现,试管婴儿的出生缺陷率约为9%,自然受孕婴儿的出生缺陷率约为6.6%。这两部分婴儿的眼部缺陷比例分别为0.3%和0.2%,心脏异常比例分别为5%和3%,生殖系统缺陷的比例分别为1.5%和1%。因而可以说明,试管婴儿技术导致试管婴儿比自然受孕婴儿出生
工厂里共有装卸工、运输工、分拣工三种工人。其中男、女工人之比为2:3。已知,装卸工、运输工、分拣工的工人数量之比为8:7:5,装卸工中的男、女工人之比为1:3,运输工中的男、女工人之比为3:4。则分拣工中,男、女工人之比为()。
设ex-是关于x的3阶无穷小,求a,b的值.
______withthesizeofthewholeearth,thehighestmountaindoesnotseemhighatall.
EmergencyRoomsMillionsofAmericansvisitanemergencyroomeachyear.MillionsmorehaveseenthehitTVshow"ER".This
最新回复
(
0
)