首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组同解,求a,b,c的值。
已知齐次线性方程组同解,求a,b,c的值。
admin
2017-01-21
83
问题
已知齐次线性方程组
同解,求a,b,c的值。
选项
答案
因为方程组(2)中“方程个数<未知数个数”,所以方程组(2)必有非零解。于是方程组 (1)必有非零解,则(1)的系数行列式为0,即 [*] 对方程组(1)的系数矩阵作初等行变换,有 [*] 则方程组(1)的通解是k(—1,—1,1)
T
。 因为(—1,—1,1)
T
是方程组(2)的解,所以 [*]=1,c=2或 b=0,c=1。 当b=1,c=2时,方程组(2)为[*] 其通解是k(—1,—1,1)
T
,所以方程组(1)与(2)同解。 当b=0,c=1时,方程组(2)为[*] 由于方程组(2)的系数矩阵的秩为1,而方程组(1)的系数矩阵的秩为2,故方程组(1)与(2)不同解,则b=0,c=1应舍去。综上,当a=2,b=1,c=2时,方程组(1)与(2)同解。
解析
转载请注明原文地址:https://kaotiyun.com/show/q9H4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
随机试题
有100个编号为1~100的罐子,第1个人在所有的编号为1的倍数的罐子中倒入1毫升水,第2个人在所有编号为2的倍数的罐子中倒人1毫升水……最后第100个人在所有编号为100的倍数的罐子中倒入1毫升水。问此时第92号罐子中装了多少毫升的水?(
双向晶闸管的额定电流与普通晶闸管一样是平均值而不是有效值。()
进行爆发调查时的首要工作是
甲国为了举办世界博览会将乙国使馆及大使官邸、丙国领馆纳入了征用规划范围。三国均为《维也纳外交关系公约》和《维也纳领事关系公约》缔约国,依相关国际法规则,下列哪一选项是正确的?()
关于室外供热管网的连接形式的说法正确的是()。
下列时间点中,属于《建筑施工场界环境噪声排放标准》GB12523--2011规定的夜间施工期间的是()。
下列各项属于工商企业基本特征的有()。
甲、乙、丙、丁等15人拟共同出资设立一有限责任公司,股东共同制定公司章程,在拟制定的公司章程中,对有关董事会组成、监事任期、股权转让事宜等作了如下规定:(1)公司设立董事会,董事会成员为7人,不设职工代表;(2)公司监事任期每届为2年;(3)股东之间
著作人身权,又称著作精神权,指著作权人对其作品所享有的各种与人身相联系或者密不可分而又无直接财产内容的权利,是作者通过创作表现个人风格的作品而依法享有获得名誉、声望和维护作品完整性的权利。著作财产权,又称著作经济权,是著作人身权的对称,是指著作权人自己使用
Animalshavebeenkeptaspetsbypeopleinallpartsoftheworldforthousandsofyears.Themost【C1】______petsaredogs,cats
最新回复
(
0
)