首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x2一4x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22 +by32,求: 正交变换矩阵Q。
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x2一4x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22 +by32,求: 正交变换矩阵Q。
admin
2017-02-13
61
问题
设二次型f(x
1
,x
2
,x
3
)=4x
2
2
一3x
3
2
+2ax
1
x
2
一4x
1
x
3
+8x
2
x
3
(其中a为整数)经过正交变换化为标准形f=y
1
2
+6y
2
2
+by
3
2
,求:
正交变换矩阵Q。
选项
答案
二次型矩阵A=[*]的特征值为λ
1
=1,λ
2
=6,λ
3
=一6。 根据(E—A)x=0得特征值λ
1
=1对应的特征向量为ξ
1
=[*]; 根据(6E—A)x=0得特征值λ
2
=6对应的特征向量为ξ
2
=[*]; 根据(一6E—A)x=0得特征值λ
3
=一6对应的特征向量为ξ
3
=[*]; 由于不同特征值所对应的特征向量必正交,故只需单位化,得γ
1
=[*],γ
2
=[*],γ
3
=[*]于是正交变换矩阵为 Q=[*] 且Q
T
AQ=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/qFH4777K
0
考研数学三
相关试题推荐
设A,B为满足AB=0的任意两个非零矩阵,则必有
设α1,α2,...,αs均为n维向量,下列结论不正确的是
设X1,X2,…,X9是来自正态总体X的简单随机样本,Y1=1/6(X1+X2+…+X6),y2=1/3(X7+X8+X9),S2=(Xi-Y2)2Z=证明统计量Z服从自由度为2的t分布.
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(φ(2)=0.977,其中φ(x)是标准正态分布函数
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设A=,而n≥2为正整数,则An-2An-1=___________.
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)的表达式.
已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x)().
随机试题
Consumerism
症见喉中哮鸣有声,胸膈烦闷,呼吸急促,喘咳气逆,咳痰不爽,痰黏色黄,或黄白相兼,烦躁,发热,恶寒,无汗,身痛,口干欲饮,大便偏干,舌苔白腻罩黄,舌尖边红,脉弦紧,治法为
5岁小儿正常血压为
青年男性,2d来胸背部疼痛,今晨出现双下肢无力,伴两便障碍,查脐以下各种感觉障碍,双下肢肌力0级,无病理反射。最可能的诊断是
在法定代表人和法人关系的问题上,下列哪些表述是正确的?()。
吊装方法基本选择步骤包括()。
青春期心理发展的矛盾性表现包括()。
根基坚固,才有繁枝茂叶,硕果累累;倘若根基浅薄,便难免枝衰叶弱。不禁风雨。山不解释自己的高度,并不影响它的耸立云端;海不解释自己的深度,并不影响它容纳百川;地不解释自己的厚度,但没有谁能取代它孕育万物的地位……人生在世,我们常常产生想解释点什么的想法。然而
快速眼动睡眠时间随年龄的变化趋势是()
下列关于快表的叙述中,哪些是正确的?()Ⅰ.快表的内容是页表的子集Ⅱ.对快表的查找是按内容并行进行的Ⅲ.当切换进程时,要刷新快表A)仅Ⅰ和ⅡB)仅Ⅱ和ⅢC)仅Ⅰ和ⅢD)都正确
最新回复
(
0
)