首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
admin
2019-07-22
48
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);
(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’(0)存在,且f
+
’(0)=A。
选项
答案
(I)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)一f(a)=f’(ξ)(b一a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x
0
∈(0,x
0
) [*] (0,δ),使得 [*] 又由于[*],对(*)式两边取x
0
→0
+
时的极限 [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/qLN4777K
0
考研数学二
相关试题推荐
设f(x)=则在点x=1处
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x=()
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
n维列向量组α1,…,αn-1线性无关.且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设线性相关,则a=_______.
使函数f(x)=2x3-9x+12x-a恰好有两个不同的零点的a等于
求微分方程cosy-cosχsin2y=siny的通解.
设f(x)具有二阶连续导数,且f’(1)=0,,则()
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
随机试题
企业资本结构决策方法主要有()
与肾性高血压有关的致血压升高的生理活性物质有
A.GBB.GB/TC.GBZD.WSE.HB行业标准的字母符号简称是
原位菌群失调是指正常菌群生活在原来部位,但出现
A.手术B.放疗C.化疗D.中药治疗E.免疫治疗
某公司现注册资本为200万元。为了扩大生产经营规模,该公司准备吸收新的投资者,将注册资本增加到250万元。按照投资协议,新的投资者需出资lOO元,同时享有该公司1/5的股份。那么由于新投资者加入而增加的资本公积份额是()万元。
要选修数理逻辑课,必须已修普通逻辑课,并对数学感兴趣。有些学生虽然对数学感兴趣,但并没修过普通逻辑课,因此,有些对数学感兴趣的学生不能选修数理逻辑课。以下哪项的逻辑结构与题干的最为类似?
在VB中,函数过程与子程序过程的区别之一是
Amajorreasonfor【21】______intheanimalworldisterritory.Themaleanimalestablishesanarea.Thesizeoftheareais
A、 B、 C、 A
最新回复
(
0
)