首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
admin
2019-07-22
60
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);
(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’(0)存在,且f
+
’(0)=A。
选项
答案
(I)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)一f(a)=f’(ξ)(b一a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x
0
∈(0,x
0
) [*] (0,δ),使得 [*] 又由于[*],对(*)式两边取x
0
→0
+
时的极限 [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/qLN4777K
0
考研数学二
相关试题推荐
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
设f(χ)在χ=0的某邻域内连续,若=2,则f(χ)在χ=0处().
f(x)=则f(x)在x=0处()
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
向量组α1,α2,…,αs线性无关的充分必要条件是
∫χ2arctanχdχ.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
求函数f(χ)=(2-t)e-tdt的最大值与最小值.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得f′(ξ)=f′(η)
设,其中f(s,t)二阶连续可偏导,求du及
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)