首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶不可逆矩阵,α1,α2是Aχ=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设A是3阶不可逆矩阵,α1,α2是Aχ=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
admin
2018-05-17
83
问题
设A是3阶不可逆矩阵,α
1
,α
2
是Aχ=0的基础解系,α
3
是属于特征值λ=1的特征向量,下列不是A的特征向量的是
选项
A、α
1
+3α
2
.
B、α
1
-α
2
.
C、α
1
+α
3
.
D、2α
3
.
答案
C
解析
Aα
1
=0,Aα
2
=0,Aα
3
=α
3
.则A(α
1
+3α
2
)=0,A(α
1
-α
2
)=0,A(2α
3
)=2α
3
.因此选项A、B、D都正确.
A(α
1
+α
3
)=α
3
,和α
1
+α
3
不相关,因此α
1
+α
3
不是特征向量,故应选C.
转载请注明原文地址:https://kaotiyun.com/show/Wrk4777K
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是线性方程组Ax=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三
设f(x)为[0,1]上的单调增加的连续函数,证明
设A为n阶非奇异矩阵,a是n维列向量,b为常数,(I)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
设a1,a2,…,as均为n维向量,下列结论不正确的是().
设向量组a1,a2,a3线性无关,且a1+aa2+4a3,2a1+a2-a3,a2+a3线性相关,则a=__________.
设三阶矩阵A=,三维列向量a=(a,1,1)T,已知Aa与a线性相关,则a=__________.
若rA=1,则Ax=0的同解方程组是ax1+bx2+cx3=0且满足,若c≠0,方程组的通解是t1(c,0,一0)T+t2(0,c,一b)T,其中t1,t2为任意常数.若c=0,方程组的通解是t1(1,2,0)T+t2(0,0,1)T,其中t1,t2为任意
(2007年试题,23)设线性方程组(1)与方程x1+x2+x3=a-1(2)有公共解,求a的值及所有公共解.
(2009年试题,三(22))设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
随机试题
A.肝破裂B.脾破裂C.胰腺挫伤断裂D.十二指肠断裂E.结肠破裂间断横向缝合
AirportbaggagescreenersintheUSA,displayingseizedchainsaws,machetesandknives,【21】travelerstochecktheirluggagefor
气虚湿阻型股肿治疗宜选用
根据工业区位理论,下列描述正确的是()。
综合信息管理组的主要任务是负责本施工项目实施过程中的信息管理,其内容包括( )。项目竣工验收信息主要包括( )。
下列关于质押与抵押区别的表述中,错误的是()。
根据《民事诉讼法》的规定,当事人不服人民法院第一审判决的,有权在法定期限内向上一级人民法院提起上诉,该法定期限是指()。
最近石家庄市的大街上出现了环保型出租专用车,该车采用PLG+汽油的双燃料系统,其尾气中有害气体的成分较普通车型下降了80%左右,解决了汽车尾气排放给城市造成的污染问题。下列物质中不属于上述有害气体的是()。
设z=z(x,y)满足方程2z-ez+2xy=3且z(1,2)=0,则dz|(1,2)=_______.
ThereisgrowinginterestinEastJapanRailwayCo.ltd.,oneofthesixcompanies,createdoutoftheprivatizednationalrailw
最新回复
(
0
)