首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x)=∫0x2(2-t)e-tdt的最值.
求函数f(x)=∫0x2(2-t)e-tdt的最值.
admin
2019-06-28
61
问题
求函数f(x)=∫
0
x
2
(2-t)e
-t
dt的最值.
选项
答案
由于f(x)是偶函数,我们只需考察x∈[0,+∞).由变限积分求导公式得 f’(x)=2x(2-x
2
)e
-x
2
. 解f’(x)=0得x=0与x=[*],于是 [*] 从而,f(x)的最大值是[*]=∫
0
2
(2-t)e
-t
d t=∫
0
2
(2-t)de
-t
=(t-2)e
-t
|
0
2
-∫
0
2
e
-t
dt =2+e|
0
2
=1+e
-2
. 由上述单调性分析,为求最小值,只需比较f(0)与[*]的大小.由于 [*]=∫
0
+∞
(2-t)e
-t
dt=[(t-2)e
-t
+e
-t
]|
0
+∞
=1>f(0)=0. 因此f(0)=0是最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/qYV4777K
0
考研数学二
相关试题推荐
设矩阵A=,则A3的秩为_________。
试确定方程x=aex(a>0)实根的个数。
设二元函数f(x,y)=计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1。
设矩阵A=,三阶矩阵B满足ABA*=E—BA-1,试计算行列式|B|。
设A为n阶可逆矩阵,则下列等式中不一定成立的是()
设f(x)在(一∞,+∞)上可导,且其反函数存在为g(x).若∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1,则当一∞<x<+∞时f(x)=____________.
求函数y=ln(χ+)的反函数.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
靶向给药系统是指
案情:天籁文化公司是北京市朝阳区一间200平方米的商品房(H路6楼101室)的产权人。新月公司认为天籁文化公司侵犯了自己的商业秘密并造成巨大损失,准备诉讼维权。为避免天籁文化公司的侵权范围继续扩散,同时也为了避免天籁文化公司转移资产,在起诉前,新月公司于2
仲裁作为解决纠纷的一种途径,应当采取的方式是()。
证券公司从事介绍业务,应当与期货公司签订书面委托协议,该委托协议应当载明的事项包括()。
专题讲座法的优点不包括()。
(一)张某为光华公司的一名员工,该公司长期拖欠张某工资,在一次索要拖欠工资的过程中,张某与该公司的法定代表人李某发生争吵,且双方发生肢体冲突。张某为了平复心中怒气,唆使好朋友王某16岁的儿子王小某将光华公司某办公室的办公用品砸坏,并承诺事成之后送
描述数据通信的基本技术参数是【 】与误码率。
Itisdifficulttoimaginewhatlifewouldbelikewithoutmemory.Themeaningsofthousandsofeverydayperceptions,thebases
A、Twothousandfeet.B、Twelvethousandfeet.C、Twentythousandfeet.D、Twenty-twothousandfeet.A
LanguageandHumanityLanguageispowerfulanditcanhelpusdoorgetthingsaswewish.LanguageasaborntraitLanguage
最新回复
(
0
)