首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x)=∫0x2(2-t)e-tdt的最值.
求函数f(x)=∫0x2(2-t)e-tdt的最值.
admin
2019-06-28
48
问题
求函数f(x)=∫
0
x
2
(2-t)e
-t
dt的最值.
选项
答案
由于f(x)是偶函数,我们只需考察x∈[0,+∞).由变限积分求导公式得 f’(x)=2x(2-x
2
)e
-x
2
. 解f’(x)=0得x=0与x=[*],于是 [*] 从而,f(x)的最大值是[*]=∫
0
2
(2-t)e
-t
d t=∫
0
2
(2-t)de
-t
=(t-2)e
-t
|
0
2
-∫
0
2
e
-t
dt =2+e|
0
2
=1+e
-2
. 由上述单调性分析,为求最小值,只需比较f(0)与[*]的大小.由于 [*]=∫
0
+∞
(2-t)e
-t
dt=[(t-2)e
-t
+e
-t
]|
0
+∞
=1>f(0)=0. 因此f(0)=0是最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/qYV4777K
0
考研数学二
相关试题推荐
设f(x)为可导函数,且满足条件=一1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设f(x,y)连续,且f(x,y)=xy+f(μ,ν)dμdν,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。证明xn存在,并求该极限。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设函数f(x,y)=3x+4y—αx2一2αy2一2βxy。试问参数α,β满足什么条件时,函数有唯一极大值?有唯一极小值?
求极限。
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
公证员遇到下列哪些情形应当回避
简述伤寒的病理特点。
企业通过补偿贸易业务,引进设备,其生产的产品用于还款时,还款的会计分录为:()
协调所有者与债权人之间利益冲突的方式包括()。
2013年,我国进口商品总额达19499.9亿美元,同比增长7.24%。其中进口初级产品6580.8亿美元,同比增长3.65%;进口机电产品8401.2亿美元,同比增长7.32%。同年,机电产品出口12644.8亿美元,同比增长6.28%。机械设备出口45
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA-1α≠b.
下面是关于AMBA(AdvancedMlicrocontrollerBusArchitecture)的叙述:I.AMBA有助于开发带有大量控制器和外设的多处理器系统Ⅱ.AMBA规定了ARM处理器内核与处理芯片中快速组件的接口标准Ⅲ.AMBA规定
从一个或多个表中将组记录添加到个或多个表的尾部,应使用
关于世界上第一台电子计算机ENIAC的叙述中,错误的是()。
Onlytwocountriesintheadvancedworldprovidenoguaranteeforpaidleavefromworktocareforanewbornchild.Lastspring
最新回复
(
0
)