首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,ai(i=1,2,3)是3维非零列向量,若Aai=iai(i=1,2,3),令α=α1+α2+α3。 (Ⅰ)证明:α,Aα,A2α线性无关; (Ⅱ)设P=(α,Aα,A2α),求P—1AP.
已知A是3阶矩阵,ai(i=1,2,3)是3维非零列向量,若Aai=iai(i=1,2,3),令α=α1+α2+α3。 (Ⅰ)证明:α,Aα,A2α线性无关; (Ⅱ)设P=(α,Aα,A2α),求P—1AP.
admin
2015-04-30
91
问题
已知A是3阶矩阵,a
i
(i=1,2,3)是3维非零列向量,若Aa
i
=ia
i
(i=1,2,3),令α=α
1
+α
2
+α
3
。
(Ⅰ)证明:α,Aα,A
2
α线性无关;
(Ⅱ)设P=(α,Aα,A
2
α),求P
—1
AP.
选项
答案
(Ⅰ)由Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=3α
3
,且α
1
,α
2
,α
3
非零可知,α
1
,α
2
,α
3
是A的不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关. 又Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
,若k
1
α+k
2
Aα+k
3
A
2
α=0,即 k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+ k
3
(α
1
+4α
2
+9α
3
)=0, 则 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0. 由α
1
,α
2
,α
3
线性无关,得齐次线性方程组 [*] 因为系数行列式为范德蒙行列式且其值不为0,所以必有k
1
=k
2
=k
3
=0,即α,Aα,Aα线性 无关. Ⅱ因为A
3
α=α+8α+27α=6α一11Aα+6A
2
α,所以 AP=A(α,Aα,A
2
α)=(Aα,A
2
α,6α一11Aα+6A
2
α) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qfbD777K
0
考研数学二
相关试题推荐
我国南方的“社日节”在北方称为()。
下列文献的产生时代按照时间先后顺序排列不正确的一项是()。
A、 B、 C、 D、 C奇数项图都为直线,偶数项图都为圆。
设函数f(x)=一2x2+3x+2k。则f(x)与横轴的交点在区间(一2,2)中。
求不定积分
(Ⅰ)求累次积分.(Ⅱ)设连续函数f(x)满足f(x)=1+∫01f(y)f(y一x)dy,求I=∫01f(x)dx。
(Ⅰ)设有一块平板竖放在比重为p的液体中,选择位于液体表面的某点为原点D,沿铅直线向下方向为Ox轴正方向,深度为x的地方平板宽度为f(x),平板浸入液体的最小深度和最大深度分别为a和b,试用微元法导出整块平板所受的液体的侧压力的积分表达式.(Ⅱ)
把当x→0时的无穷小量α=In(1+x2)一In(1一x4),β=∫02tantdt,γ=arctanx一x排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
曲线y=x2arctanarctanx2的渐近线条数为()
随机试题
福利国家的最初尝试起始于()
失笑散的功用是
喹诺酮类药物的抗菌机制是()。
患者上前牙龋充填后三天出现自发痛,不敢咬合。查:充填体,叩(++),松动I度,牙龈轻红肿,冷热测无反应,该患牙三天前处理中的问题最可能是
诊断自主性功能亢进性甲状腺腺瘤最佳的甲状腺检查是
监理工程师对施工图审核的重点是( )。
《危险性较大的分部分项工程安全管理办法》规定,施工单位应当在危险性较大的分部分项工程施工前编制专项方案。下述选项中属于专项方案施工安全保证措施的是()。
某企业收同货款25000元存入银行,记账凭证的记录为:“借:银行存款25800,贷:其他应收款25800”,并已登记入账。更正时需要做的会计分录包括()
城市社区与农村社区的主要区别。(中山大学2011年研)
根据婚姻法的明确规定,下列哪些人之间禁止结婚?()
最新回复
(
0
)