首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=求:(I)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(v).
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=求:(I)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(v).
admin
2018-11-20
56
问题
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=
,P{Y=1}=
求:(I)Z=XY的概率密度f
Z
(z);(Ⅱ)V=|X—Y|的概率密度f
V
(v).
选项
答案
(I)依题意[*],X~N(0,1)且X与Y相互独立,于是Z=XY的分布函数为 F
Z
(z)=P{XY≤z}=P{Y=一1}P{XY≤z|Y=一1}+P{Y=1}P{XY≤z|Y=1} =P{Y=一1}P{一X≤z|Y=一1}+P{Y=1}P{X≤z|Y=1} =P{Y=-1}P{X≥一z}+P{Y=1}P{X≤z} [*] 即Z=XY服从标准正态分布,其概率密度为 [*] (Ⅱ)由于V=|X—Y|只取非负值,因此当v<0时,其分布函数F
V
(v)=P{|X—Y|≤v}=0;当v≥0时, F
V
(v)=P{一v≤X—Y≤v} =P{Y=一1}P{一v≤X—Y≤v|Y=一1}+P{Y=1}P{一v≤X一Y≤v|Y=1} [*] 综上计算可得 [*] 由于F
V
(v)是连续函数,且除个别点外,导数存在,因此V的概率密度为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qyW4777K
0
考研数学三
相关试题推荐
设随机变量(X,Y)的联合密度为f(x,y)=求:
随机变量(X,Y)的联合密度函数为f(x,y)=求常数A;
设(X,Y)的联合概率密度为.f(x,y)=求:(X,Y)的边缘密度函数;
设连续型随机变量X的分布函数为F(x)=求常数A,B;
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
向量组α1,α2,…,αm线性无关的充分必要条件是().
10件产品中4件为次品,6件为正品,现抽取2件产品.求第一件为正品,第二件为次品的概率;
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E一ααT,B=E+ααT,且B为A的逆矩阵,则a=________.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)=f(x)=0在(0,1)内有根.
随机试题
2012年3月5日,统一俄罗斯党领导人、总理普京当选总统。这是他继2000年后第二次当选总统。()
女,25岁,因近一年来刷牙牙龈偶有出血就诊,检查:PD:3~4mm,个别牙有牙龈退缩约1~2mm,此患者最可能诊断为
下列各穴中,属足太阴脾经的是
( )占了工程费用的绝大部分,工程师应给予足够的重视。但这类支付的程序比较简单,一般通过签发期中支付证书支付进度款。
无权代理在被代理人追认前,相对人可以催告被代理人在法定期限内予以追认。该法定期限是()。
成语“草木皆兵”反映的历史事件是()。
电冰箱的问世引起了冰市场的崩溃,以前人们用冰来保鲜食物,现在电冰箱替代了冰的作用。同样道理,由于生物工程的成果,研究出能抵抗害虫的农作物,则会引起什么后果?以下哪项是上述问题的最好回答?()。
下列符合“低碳生活”做法的是:
()对于知识相当于分析对于()
为“部门信息“表增加一个新字段“人数”,编写满足如下要求的程序:根据“雇员信息”表中的“部门号”字段的值确定“部门信息”表的“人数”字段的值,即对“雇员信息”表中的记录按“部门号”归类。将“部门信息”表中的记录存储到ate表中(表结构与“部门信息”表完全相
最新回复
(
0
)