首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
admin
2016-10-13
33
问题
设α
1
,α
2
,…,α
t
为n个n维向量,证明:α
1
,α
2
,…,α
t
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,…,α
t
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示,取e
1
=[*],则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故 α
1
,α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/r6u4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设A是m×n矩阵,B是,n×m矩阵,则
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
随机试题
对汞中毒具有防护作用的无机盐是()。
支配胃的交感神经节前神经元,位于
患儿1岁,发热恶寒,鼻塞流涕,咽部充血,兼见咳嗽,喉间痰多,甚则气急痰鸣,舌苔厚腻。其诊断是
对于预先给定借款偿还期的项目,应采用()指标分析项目的偿还能力。
某公司目前的资本包括每股面值1元的普通股800万股和利率为10%的3000万元的债务。该公司拟投产一新产品,该项目需投资4000万元,预计每年可增加息税前利润400万元。该项目的备选筹资方案有两个:(1)按11%的利率发行债券;(2)按每股20元的价格
企业目标管理的特点主要包括()。
为推广新的广播操,某学校决定举行广播操比赛。有人选择某年级四个班针对广播操比赛全过程的教育情况进行了调查,发现四个班主任在动员、训练中对学生的教育大同小异,不同的是比赛结束成绩公布之后。四位班主任的做法如下:某(1)班(冠军):“同学们,经过全班
小学生因上课专心听讲受到老师表扬而逐步养成上课专心听讲的习惯属于()
“职业教育以一技之长可谋生活为主”,使中等资质的学生尽其所长,以期地无弃利,国民富裕。这是中国对“职业教育”概念的最早阐述。这个人物是
PeopleworldwidecelebrateNewYearindifferentways.InLatinAmerica,peopleexpresstheirhopesthroughthecoloroftheiru
最新回复
(
0
)