首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2019-04-22
57
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
(tx)dt+e
-x
=0可化为f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f’’(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=-1,λ
2
=-2, 则方程f’’(x)+3f’(x)+2f(x)=0的通解为C
1
e
-x
+C
2
e
-2x
. 令f’’(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=axe
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=-1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/rCV4777K
0
考研数学二
相关试题推荐
设随机变量X的概率密度为f(x)=,且aX+b服从N(0,1)(a>0),则常数A=__________,a=__________,b=__________.
设=__________。
设函数在x=0处连续,则a=__________.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程租AX=0的通解是____________。
设A为m×n阶矩阵,C为n阶矩阵,B=AC,且r(A)=r,r(B)=r1,则().
设曲线y=χ2+aχ+b和2y=-1+χy3在点(1,-1)处相切,其中a,b是常数,则
求圆χ2+y2=2y内位于抛物线y=χ2上方部分的面积.
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
求极限ln(1+χt)dt.
设A=E-ααT,其中a为n维非零列向量.证明:A2=A的充分必要条件是g为单位向量;
随机试题
血清脂蛋白电泳可分α-脂蛋白、前β-脂蛋白、β-脂蛋白及乳糜微粒四个条带,α-脂蛋白中所含的载脂蛋白是A.载脂蛋白AB.载脂蛋白BC.载脂蛋白DD.载脂蛋白CE.载脂蛋白E
男,28岁,上呼吸道感染后2周,出现肉眼血尿、颜面水肿入院。体检:血压20/13.5kPa(150/100mmHg),尿蛋白(++),红细胞满视野。此时护理措施不妥的是()
1958年5月,中共第八届全国代表大会第二次会议确定了“()”。
销售物流合理化的基本原则主要有()。
材料:我是一名初三的学生,我们现在不知该怎样面对我们的班主任,她对我们动不动就是一顿骂,甚至打上几巴掌,有一次把一个同学都打得流鼻血了。还有一次,有个学习成绩一般的同学因一些知识点不懂提出疑问,班主任就说了一些很刺激的话,然后课也不上了,坐到讲台
1928年10月和11月,毛泽东写了《中国的红色政权为什么能够存在?》和《井冈山的斗争》两篇文章,明确地指出()
如下图所示,网络站点A发送数据包给B,在数据包经过路由器转发的过程中,封装在数据包3中的目的IP地址和目的MAC地址是()。
在VisualFoxPro中,定义数据的有效性规则时,在规则框输入的表达式的类型是
移动硬盘与U盘相比,最大的优势是()。
Consumersandproducersobviouslymakedecisionsthatmoldtheeconomy,butthereisathirdmajor【1】toconsidertheroleofgov
最新回复
(
0
)