首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组 的通解是___________。
已知齐次线性方程组 有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组 的通解是___________。
admin
2017-07-31
108
问题
已知齐次线性方程组
有通解k
1
(2,一1,0,1)
T
+k
2
(3,2,1,0)
T
,则方程组
的通解是___________。
选项
答案
k(13,一3,1,5)
T
,k为任意常数
解析
方程组(2)的通解一定会在方程组(1)的通解之中,且是方程组(1)的通解中满足(2)中第三个方程的解,将(1)的通解
代入(2)的第三个方程,得(2k
1
+3k
2
)一2(一k
1
+2k
2
)+0k
2
+k
1
=0,即5k
1
=k
2
,将其代入(1)的通解中,得方程组(2)的通解为5k
2
(2,一1,0,1)
T
+k
2
(3,2,1,0)
T
=k
2
(13,一3,1,5)
T
,k
2
为任意常数。
转载请注明原文地址:https://kaotiyun.com/show/Eat4777K
0
考研数学二
相关试题推荐
A=1/10,k=10
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均为实对称矩阵时,试证(I)的逆命题成立.
设A是n阶矩阵,且A的行列式|A|=0,则A().
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
下列不属于营销类人员的个性特点的是
下列细菌不形成芽胞的是
6个月女婴,4月份入院,发热2天。体温38,0℃,咳嗽有痰,1天来惊厥4~5次,发作时两眼上窜,四肢抽动,持续1~2分钟,抽后神志清。体检:一般情况好,前囟2.5cm×2.5cm,平坦,枕骨按之有乒乓球感,双肺有中、小水泡音。
评价颌骨骨折复位成功的标准是
患者,女性,23岁。因库欣综合征入院,查体:面部皮肤红而薄,头发稀疏,血压180/100mmHg,肥胖。护士应指导患者饮食的注意点是
A上市公司2×17年有关经济业务发生如下:(1)1月5日,委托证券公司从股票交易所购入B上市公司股票100000股,每股购买价款为5.5元(其中包含已宣告但尚未发放的现金股利0.2元/股)。另支付相关交易费用30000元,取得的增值税专用发票上注明的
(2017·山东)依据奥苏贝尔的有意义学习理论,学习材料的逻辑意义能确保产生有意义学习。()
把戏:伎俩:手段
★现在的年轻人越来越不健康了。()
A、90.B、190.C、120.D、1,200.B
最新回复
(
0
)