首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上可导,且其反函数存在,记为g(x),若∫0f(x) g(t)dt+∫0x f(t)dt=xex—ex+1,则当一∞<x<+∞时f(x)= ________.
设f(x)在(一∞,+∞)上可导,且其反函数存在,记为g(x),若∫0f(x) g(t)dt+∫0x f(t)dt=xex—ex+1,则当一∞<x<+∞时f(x)= ________.
admin
2015-07-22
26
问题
设f(x)在(一∞,+∞)上可导,且其反函数存在,记为g(x),若∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
—e
x
+1,则当一∞<x<+∞时f(x)= ________.
选项
答案
[*]
解析
未知函数含于积分之中的方程称积分方程.现在此积分的上限为变量,求此方程的解的办法是将方程两边对x求导数化成微分方程解之。注意,积分方程的初值条件蕴含于所给式子之中,读者应自行设法挖掘之.
将所给方程两边对x求导,有
g(f(x))f’(x)+f(x)=xe
x
.因g(f(x))≡x,所以上式成为
xf’(x)+f(x)=xe
x
.以x=0代入上式,由于f’(0)存在,所以由上式得f(0)=0.当x≠0时,上式成为
转载请注明原文地址:https://kaotiyun.com/show/rSU4777K
0
考研数学三
相关试题推荐
2022年国务院政府工作报告指出,完善民营企业债券融资支持机制,全面实行股票发行(),促进资本市场平稳健康发展。
中国不断扩大对外开放,不仅发展了自己,也造福了世界。过去中国经济发展是在开放条件下取得的,未来中国经济发展也必须在更加开放的条件下进行。这是根据中国改革发展客观需要作出的自主选择,有利于
人民代表大会制度建立60多年来,在实践中不断得到巩固和发展,展现出蓬勃生机活力。历史充分证明,人民代表大会制度是
为了得到尽可能高的利润率和尽可能多的利润,不同生产部门的资本家之间必然展开激烈的竞争,大量资本必然从利润率低的部门转投到利润率高的部门,从而导致利润率平均化。按照平均利润率来计算和获得的利润,叫作平均利润。利润平均化
唯物主义和唯心主义是哲学上两个对立的基本派别。划分二者的标准是
毛泽东在《新民主主义论》中提出了“新民主主义”的概念。他指出:“中国革命的历史特点是分为民主主义和社会主义两个步骤,而其第一步现在已不是一般的民主主义,而是中国式的、特殊的、新式的民主主义,而是新民主主义。”新民主主义理论的系统阐明标志着
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
随机试题
Libman-Sacks血栓性心内膜炎常发生于
诊断恶性胰岛细胞瘤最可靠的指征是
偏盲型视野缺损最常见于
被审计单位存在与可能导致对被审计单位持续经营能力产生重大疑虑的事项或情况有关的重大不确定性,但未在财务报表中作出充分披露,注册会计师应发表的审计意见类型为()。
Excel的三个主要功能是()。
冬天:寒冷:羽绒服
简述知识产权的法律特征。(2013一专一53)
negligenthomicide
Whendiditbegintorain?
A、alsoB、stillC、yetA下面介绍的是“hotdog”的另外一种含义。also意为“也”,still意为“仍然”,yet则用于否定句和疑问句。
最新回复
(
0
)