首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。 求矩阵A的特征值和特征向量。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。 求矩阵A的特征值和特征向量。
admin
2019-05-11
103
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0。记n阶矩阵A=αβ
T
。
求矩阵A的特征值和特征向量。
选项
答案
设λ为A的特征值,则λ
2
为A
2
的特征值。因A
2
=O,所以A
2
的特征值全为零,故λ=0,即A的特征值全为零,于是方程组Ax=0的非零解就是A的特征向量。不妨设a
1
≠0,b
1
≠0,对A作初等行变换得 [*] 则Ax=0的基础解系为(一b
2
,b
1
,0,…,0)
T
,(一b
3
,0,b
1
,…,0)
T
,…,(一b
m
,0,0,…,b
1
)
T
,故矩阵A的特征向量为k
1
(一b
2
,b
1
,0,…,0)
T
+k
2
(一b
3
,0,b
1
,…,0)
T
+…+k
n-1
(一b
n
,0,0,…,b
1
)
T
其中k
1
,k
2
,…,k
n-1
不全为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/rfV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
设z=z(χ,y)满足=z2,令证明:=0.
设f(χ)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f′(ξ)=2∫01f(χ)dχ.
求二元函数f(χ,y)=χ2(2+y2)+ylny的极值.
微分方程y′-χe-y+=0的通解为_______.
设f(χ)在[a,b]上连续可导,f(χ)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(χ)dχ=0,证明:(1)在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠ξ),使得f〞(η)=f
设A为n阶实对称矩阵,下列结论不正确的是().
下列函数中在[-1,2]上定积分不存在的是
一个容器的内表面侧面由曲线x=(0≤x≤2,y>0)绕x轴旋转而成,外表面由曲线x=在点(2,)的切线位于点(2,)与x轴交点之间的部分绕x轴旋转而成,此容器材质的密度为μ,求此容器自身的质量M及其内表面的面积S.
变换二次积分的积分次序:。
随机试题
患者男性,27岁,发热7d,为稽留热,查体见胸腹部数个鲜红色皮疹,约3mm大小,压之褪色,该皮疹是
左向右分流型先心病最常见的并发症为
下列哪一项不是各国对外贸易政策的构成要素?()。
某民用建筑的两跨连续钢筋混凝土单向板,两跨中间同时各作用有重量相等的设备,设备直接装置在楼面板上(无垫层),其基座尺寸为0.6m×0.8m。如图1—24所示,楼板支座在梁和承重砖墙上。已知:楼板厚度为120mm,其计算跨度取3.0m,无设备区的楼面活荷载标
利用金融市场提供的风险分散功能,投资者可以利用组合投资分散那些投资于单一金融资产所面临的( )。
我国最早生产葡萄酒的地方是()。
下列关于各类合同当事人权利义务的表述,正确的是()。
若
ThesettlementoftheUnitedStateshasoccupiedtraditionalhistorianssince1893whenFrederickJacksonTurnerdevelopedhisF
Opinionpollsarenowbeginningtoshowthat,whoeveristoblameandwhateverhappensfromnowon,highunemploymentisprobabl
最新回复
(
0
)