首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1=(0,0,1,0)T,ξ2=(-1,1,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,1,1,0)T,η2=(-1,2,2,1)T是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
已知ξ1=(0,0,1,0)T,ξ2=(-1,1,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,1,1,0)T,η2=(-1,2,2,1)T是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
admin
2016-10-20
77
问题
已知ξ
1
=(0,0,1,0)
T
,ξ
2
=(-1,1,0,1)
T
是齐次线性方程组(Ⅰ)的基础解系,η
1
=(0,1,1,0)
T
,η
2
=(-1,2,2,1)
T
是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
选项
答案
1°设齐次线性方程组(Ⅰ)与(Ⅱ)的公共解是γ,则 y=c
1
ξ
1
+c
2
ξ
2
=d
1
η
1
+d
2
η
2
, 从而c
1
ξ
1
+c
2
ξ
2
-d
1
η
1
-d
2
η
2
=0.解齐次线性方程组(Ⅲ)(ξ
1
,ξ
2
,-η
1
,-η
2
)x=0,由 (ξ
1
,ξ
2
,-η
1
,-η
2
)=[*] 得(Ⅲ)的通解为t(1,1,-1,1)
T
,即c
1
=c
2
=t,d
1
=-t,d
2
=t. 从而方程组(Ⅰ)和(Ⅱ)有非零公共解T(ξ
1
+ξ
2
)=t(-1,1,1,1)
T
. 2°若(Ⅱ)的解l
1
η
1
+l
2
η
2
=(-l
2
,l
1
+2l
2
,l
1
+2l
2
,l
2
)
T
是公共解,则它可由(Ⅰ)的基础解系ξ
1
,ξ
2
线性表出. [*] 可见l
1
=-l
2
时,r(ξ
1
,ξ
2
,l
1
η
1
+l
2
η
2
)=r(ξ
1
,ξ
2
)=2. 故公共解是l(η
1
-η
2
)=l(1,-1,-1,-1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/rgT4777K
0
考研数学三
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
求出曲面z=xy上的点,使这点处的法线垂直于平面x+3y+z+9=0,并写出这法线的方程.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
已知下列齐方程组(I)(Ⅱ)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
随机试题
急性心梗使用溶栓疗法主要是()
患者,男性,46岁,因雨天户外劳作被雷电击中,患者面色苍白、呆滞、对周围失去反应,出现昏迷、心室纤颤、瞳孔散大、呼吸心搏停止。应立即对患者进行
A.tRNAB.mRNAC.hnRNAD.snRNAE.rRNAmRNA的前体是
肾气亏损而致痛经,腰骶酸痛,方用益肾调经汤,宜选加()
特殊风险与业主违约导致合同中止支付的根本区别在于:前者只补偿成本,而后者还应包括对承包人利润损失的补偿。()
历代帝王陵墓中“因山为穴”的是( )。
发放二手车贷款的金额不得超过借款人所购汽车价格的()。
各单位保存的会计档案不得借出、查阅或复制。()
巴黎和会上,英、法、美三国争夺的焦点是()。
AU.S.biotechnology(生物工艺学)firmsaidonWednesdayithaddevelopedanewtechniquetoproducegenetically【S1】______chickensthat
最新回复
(
0
)