首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1=(0,0,1,0)T,ξ2=(-1,1,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,1,1,0)T,η2=(-1,2,2,1)T是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
已知ξ1=(0,0,1,0)T,ξ2=(-1,1,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,1,1,0)T,η2=(-1,2,2,1)T是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
admin
2016-10-20
128
问题
已知ξ
1
=(0,0,1,0)
T
,ξ
2
=(-1,1,0,1)
T
是齐次线性方程组(Ⅰ)的基础解系,η
1
=(0,1,1,0)
T
,η
2
=(-1,2,2,1)
T
是齐次线性方程组(Ⅱ)的基础解系,求齐次线性方程组(Ⅰ)与(Ⅱ)的公共解.
选项
答案
1°设齐次线性方程组(Ⅰ)与(Ⅱ)的公共解是γ,则 y=c
1
ξ
1
+c
2
ξ
2
=d
1
η
1
+d
2
η
2
, 从而c
1
ξ
1
+c
2
ξ
2
-d
1
η
1
-d
2
η
2
=0.解齐次线性方程组(Ⅲ)(ξ
1
,ξ
2
,-η
1
,-η
2
)x=0,由 (ξ
1
,ξ
2
,-η
1
,-η
2
)=[*] 得(Ⅲ)的通解为t(1,1,-1,1)
T
,即c
1
=c
2
=t,d
1
=-t,d
2
=t. 从而方程组(Ⅰ)和(Ⅱ)有非零公共解T(ξ
1
+ξ
2
)=t(-1,1,1,1)
T
. 2°若(Ⅱ)的解l
1
η
1
+l
2
η
2
=(-l
2
,l
1
+2l
2
,l
1
+2l
2
,l
2
)
T
是公共解,则它可由(Ⅰ)的基础解系ξ
1
,ξ
2
线性表出. [*] 可见l
1
=-l
2
时,r(ξ
1
,ξ
2
,l
1
η
1
+l
2
η
2
)=r(ξ
1
,ξ
2
)=2. 故公共解是l(η
1
-η
2
)=l(1,-1,-1,-1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/rgT4777K
0
考研数学三
相关试题推荐
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
A是n阶矩阵,且A3=0,则().
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
已知线性方程组(I)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
随机试题
违法行为调查终结后,行政机关负责人应当集体讨论决定。()
当归补血汤中黄芪配当归的作用是
可用于吗啡类成瘾者戒毒的药物是
污染物在衬层和包气带土层中的迁移是地下水的运动速度、污染物与介质之间的()等多种物理化学反应共同作用所致。
理财规划师需要根据投资规划所需要的相关信息编制特定表格,这些表格不包括( )。
出身布衣、重视经济立法并严惩官员贪污的古代皇帝是()。
“劳动创造了人本身”的观点属于()。
A、 B、 C、 D、 D每组图中前一个图形的内部图形为后一个图形的外部图形,第三个图的内部图形是第一图的外部图形。
面对动态变化、竞争加剧的世界经济,管理者必须注意考虑环境因素的作用,以便充分理解与熟悉环境,从而能够做到有效地适应环境并______。
A.HarmScreeningMayDotoaYoungerWomanB.InvestigatingtheEffectofScreeningC.EffectsPredictedbyTwoDifferentModel
最新回复
(
0
)